Suppr超能文献

基于改进的 LEACH 与压缩感知融合的无线传感器网络数据融合方案研究。

Research on Data Fusion Scheme for Wireless Sensor Networks with Combined Improved LEACH and Compressed Sensing.

机构信息

School of Information Engineering, South West University of Science and Technology, Mianyang 621010, China.

Department of Network Information Management Center, Sichuan University of Science and Engineering, Zigong 643000, China.

出版信息

Sensors (Basel). 2019 Oct 29;19(21):4704. doi: 10.3390/s19214704.

Abstract

There are a lot of redundant data in wireless sensor networks (WSNs). If these redundant data are processed and transmitted, the node energy consumption will be too fast and will affect the overall lifetime of the network. Data fusion technology compresses the sampled data to eliminate redundancy, which can effectively reduce the amount of data sent by the node and prolong the lifetime of the network. Due to the dynamic nature of WSNs, traditional data fusion techniques still have many problems. Compressed sensing (CS) theory has introduced new ideas to solve these problems for WSNs. Therefore, in this study we analyze the data fusion scheme and propose an algorithm that combines improved clustered (ICL) algorithm low energy adaptive clustering hierarchy (LEACH) and CS (ICL-LEACH-CS). First, we consider the factors of residual energy, distance, and compression ratio and use the improved clustered LEACH algorithm (ICL-LEACH) to elect the cluster head (CH) nodes. Second, the CH uses a Gaussian random observation matrix to perform linear compressed projection (LCP) on the cluster common (CM) node signal and compresses the N-dimensional signal into M-dimensional information. Then, the CH node compresses the data by using a CS algorithm to obtain a measured value and sends the measured value to the sink node. Finally, the sink node reconstructs the signal using a convex optimization method and uses a least squares algorithm to fuse the signal. The signal reconstruction optimization problem is modeled as an equivalent -norm problem. The simulation results show that, compared with other data fusion algorithms, the ICL-LEACH-CS algorithm effectively reduces the node's transmission while balancing the load between the nodes.

摘要

无线传感器网络(WSN)中存在大量冗余数据。如果对这些冗余数据进行处理和传输,将会使节点能量消耗过快,影响网络的整体寿命。数据融合技术对采样数据进行压缩处理,消除冗余,从而有效减少节点发送的数据量,延长网络的生命周期。由于 WSN 的动态特性,传统的数据融合技术仍存在许多问题。压缩感知(CS)理论为 WSN 解决这些问题带来了新的思路。因此,在本研究中,我们分析了数据融合方案,并提出了一种结合改进聚类(ICL)算法的低功耗自适应聚类分层(LEACH)和 CS(ICL-LEACH-CS)算法。首先,我们考虑了剩余能量、距离和压缩比等因素,使用改进聚类的 LEACH 算法(ICL-LEACH)选举簇头(CH)节点。其次,CH 节点使用高斯随机观测矩阵对簇内公共(CM)节点信号进行线性压缩投影(LCP),将 N 维信号压缩到 M 维信息。然后,CH 节点使用 CS 算法对数据进行压缩,得到一个测量值,并将测量值发送到汇聚节点。最后,汇聚节点使用凸优化方法重构信号,并使用最小二乘法融合信号。信号重构优化问题被建模为等范数问题。仿真结果表明,与其他数据融合算法相比,ICL-LEACH-CS 算法在有效降低节点传输的同时,还能平衡节点之间的负载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a14f/6864458/8f0deb81cc62/sensors-19-04704-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验