Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
Science. 2019 Nov 1;366(6465):645-648. doi: 10.1126/science.aax6873.
The propensity of metals to form irregular and nonplanar electrodeposits at liquid-solid interfaces has emerged as a fundamental barrier to high-energy, rechargeable batteries that use metal anodes. We report an epitaxial mechanism to regulate nucleation, growth, and reversibility of metal anodes. The crystallographic, surface texturing, and electrochemical criteria for reversible epitaxial electrodeposition of metals are defined and their effectiveness demonstrated by using zinc (Zn), a safe, low-cost, and energy-dense battery anode material. Graphene, with a low lattice mismatch for Zn, is shown to be effective in driving deposition of Zn with a locked crystallographic orientation relation. The resultant epitaxial Zn anodes achieve exceptional reversibility over thousands of cycles at moderate and high rates. Reversible electrochemical epitaxy of metals provides a general pathway toward energy-dense batteries with high reversibility.
金属在固-液界面形成不规则和非平面电沉积的倾向已成为高能可再充电电池使用金属阳极的一个基本障碍。我们报告了一种调控金属阳极成核、生长和可逆性的外延机制。本文定义了金属可逆外延电沉积的晶体学、表面织构和电化学标准,并通过使用锌(Zn)——一种安全、低成本和能量密集型电池阳极材料——证明了其有效性。与 Zn 晶格失配较小的石墨烯被证明在驱动 Zn 以锁定晶体取向关系的沉积方面非常有效。所得外延 Zn 阳极在中高倍率下数千个循环中表现出优异的可逆性。金属的电化学可逆外延为实现高可逆性的高能密电池提供了一种通用途径。