Dai Yuhang, Du Wenjia, Dong Haobo, Gao Xuan, Su Chang, Paul Partha P, Lukic Bratislav, Zhang Chengyi, Ye Chumei, Li Jinghao, Zong Wei, Li Jianwei, Liu Yiyang, Rack Alexander, Mai Liqiang, Shearing Paul R, He Guanjie
Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK.
Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
Nat Commun. 2025 Aug 8;16(1):7312. doi: 10.1038/s41467-025-62470-x.
Metal anodes hold considerable promise for high-energy-density batteries but are fundamentally limited by electrochemical irreversibility caused by uneven metal deposition and dendrite formation, which compromise battery lifespan and safety. The chaotic ion flow (or ion flux vortex) near the electrode surface, driving these instabilities, has remained elusive due to limitations in conventional techniques such as scanning electron and atomic force microscopies, which are invasive and incapable of probing internal structures of deposits. Here, we employ in-situ X-ray computed tomography (CT) to non-destructively visualize Zn deposition on LAPONITE-coated Zn anodes, thereby revealing the internal structural evolution and deposition orientation. Combined with computational fluid dynamics simulations, we demonstrate that the LAPONITE coating, with its separated positive and negative charge centers, suppresses ionic vortex formation, guiding uniform, dense, and vertically aligned Zn growth along (100) plane, thereby significantly mitigating dendrite growth. This translates into a 3.17-Ah Zn-MnO pouch cell with stable performance over 100 cycles, offering a viable path toward scalable, high-performance metal-anode batteries.
金属阳极对高能量密度电池具有巨大潜力,但由于不均匀的金属沉积和枝晶形成导致的电化学不可逆性,从根本上限制了其性能,这会影响电池寿命和安全性。电极表面附近的混沌离子流(或离子通量涡旋)驱动了这些不稳定性,由于扫描电子显微镜和原子力显微镜等传统技术的局限性,这种离子流一直难以捉摸,这些传统技术具有侵入性,无法探测沉积物的内部结构。在这里,我们采用原位X射线计算机断层扫描(CT)来无损可视化涂覆锂皂石的锌阳极上的锌沉积,从而揭示内部结构演变和沉积取向。结合计算流体动力学模拟,我们证明锂皂石涂层因其分离的正负电荷中心,抑制了离子涡旋的形成,引导锌沿(100)平面均匀、致密且垂直排列生长,从而显著减轻枝晶生长。这转化为一个3.17 Ah的锌-二氧化锰软包电池,在100次循环中性能稳定,为可扩展的高性能金属阳极电池提供了一条可行的途径。