Suppr超能文献

Calibration algorithm for cooled mid-infrared systems considering the influences of ambient temperature and integration time.

作者信息

Chang Songtao, Li Zhou

出版信息

Appl Opt. 2019 Oct 10;58(29):8118-8125. doi: 10.1364/AO.58.008118.

Abstract

Midwave infrared systems with cooled detectors are generally used for high-precision or quantitative measurement, such as radiometry and thermometry. As a basis of these applications, radiometric calibration aims to obtain the relationship between the infrared images and the incident radiant flux generated by the scene or targets. Conventional radiometric calibration algorithms do not take the influences of integration and ambient temperature into consideration. As a consequence, the accuracy of calibration deteriorates whenever the temperature or the integration time varies. To solve this problem, we analyzed the effects of integration time and ambient temperature on coefficients of the radiometric calibration formula by theoretical and experimental analysis. Then, a radiometric calibration method is deduced to remove the variation of integration time and ambient temperature on the accuracy of calibration and radiometry. Several radiometric calibration experiments were conducted using a midwave infrared camera inside a chamber with controllable temperature. The results indicate that the proposed calibration algorithm is more effective and accurate, compared with conventional calibration methods, in complicated working conditions with variable integration times and ambient temperatures.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验