Liu Yue, Xing Yintian, Yang Chao, Li Chuang, Xue Changxi
Appl Opt. 2019 Sep 20;58(27):7311-7318. doi: 10.1364/AO.58.007311.
Precision glass molding (PGM) has become a viable processing method for large-volume aspheric optical elements. The optimization of a PGM process is an obstacle to the realization of mass production. The current work is focused on optimizing the process parameters to gain satisfactory surface shape. But the machining cycle time is not optimized. When setting the process route in the machine interface, going to the next step after reaching the target temperature rather than reaching the target time is usually set for the heating and cooling phase. Thus, the time to complete the heating and cooling stages of the production cycle is known only in the actual production. As for chalcogenide glass, its physical and chemical properties are greatly dependent on temperature. So, it is necessary to effectively simulate these stages to obtain the cost in time for actual production. Due to the excellent availability of numerical simulation, the rapid development of computing technology, and the increase of task scale in data and information processing, the finite element method can be applied to simulate the whole molding process. In this paper, a heat transfer model is established with the partial differential equation toolbox in MATLAB software. MSC.Marc software is used to simulate the heating stage at the same time. The numerical results are consistent, indicating that the heat transfer model established in MATLAB is, at least to a certain extent, valid. The heat transfer model needs further improvement by considering temperature-dependent properties such as viscoelasticity to make it a more effective tool for process analysis and optimization.
精密玻璃模压(PGM)已成为大批量生产非球面光学元件的一种可行加工方法。PGM工艺的优化是实现大规模生产的一个障碍。当前的工作重点是优化工艺参数以获得令人满意的表面形状。但加工周期时间并未得到优化。在机床界面设置工艺路线时,加热和冷却阶段通常设置为达到目标温度后进入下一步,而非达到目标时间。因此,生产周期中完成加热和冷却阶段的时间只有在实际生产中才知道。至于硫系玻璃,其物理和化学性质在很大程度上取决于温度。所以,有必要对这些阶段进行有效模拟,以便获得实际生产的时间成本。由于数值模拟的良好可用性、计算技术的快速发展以及数据和信息处理任务规模的增加,有限元方法可应用于模拟整个模压过程。本文利用MATLAB软件中的偏微分方程工具箱建立了传热模型。同时使用MSC.Marc软件模拟加热阶段。数值结果一致,表明在MATLAB中建立的传热模型至少在一定程度上是有效的。传热模型需要通过考虑诸如粘弹性等与温度相关的特性进一步改进,使其成为工艺分析和优化的更有效工具。