Song Limin, Yang Zhenjun, Zhang Shumin, Li Xingliang
Opt Express. 2019 Sep 16;27(19):26331-26345. doi: 10.1364/OE.27.026331.
Trajectory control of spatial solitons is an important subject in optical transmission field. Here we investigate the propagation dynamics of Laguerre-Gaussian soliton arrays in nonlinear media with a strong nonlocality and introduce two parameters, which we refer to as initial tangential velocity and displacement, to control the propagation path. The general analytical expression for the evolution of the soliton array is derived and the propagation properties, such as the intensity distribution, the propagation trajectory, the center distance, and the angular velocity are analyzed. It is found that the initial tangential velocity and displacement make the solitons sinusoidally oscillate in the and directions, and each constituent soliton undergoes elliptically or circularly spiral trajectory during propagation. A series of numerical examples is exhibited to graphically illustrate these typical propagation properties. Our results may provide a new perspective and stimulate further active investigations of multisoliton interaction and may be applied in optical communication and particle control.
空间孤子的轨迹控制是光传输领域的一个重要课题。在此,我们研究了具有强非局域性的非线性介质中拉盖尔 - 高斯孤子阵列的传播动力学,并引入了两个参数(我们将其称为初始切向速度和位移)来控制传播路径。推导了孤子阵列演化的一般解析表达式,并分析了其传播特性,如强度分布、传播轨迹、中心距离和角速度。研究发现,初始切向速度和位移使孤子在x和y方向上作正弦振荡,并且每个组成孤子在传播过程中经历椭圆或圆形螺旋轨迹。展示了一系列数值示例以直观地说明这些典型的传播特性。我们的结果可能提供一个新的视角,并激发对多孤子相互作用的进一步积极研究,且可能应用于光通信和粒子控制。