Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Chem Phys. 2019 Oct 28;151(16):164120. doi: 10.1063/1.5125455.
Massively parallel computer architectures create new opportunities for the performance of long-time scale molecular dynamics (MD) simulations. Here, we introduce the path-accelerated molecular dynamics method that takes advantage of distributed computing to reduce the wall-clock time of MD simulation via parallelization with respect to stochastic MD time steps. The marginal distribution for the time evolution of a system is expressed in terms of a path integral, enabling the use of path sampling techniques to numerically integrate MD trajectories. By parallelizing the evaluation of the path action with respect to time and by initializing the path configurations from a nonequilibrium distribution, the algorithm enables significant speedups in terms of the length of MD trajectories that can be integrated in a given amount of wall-clock time. The method is demonstrated for Brownian dynamics, although it is generalizable to other stochastic equations of motion including open systems. We apply the method to two simple systems, a harmonic oscillator and a Lennard-Jones liquid, and we show that in comparison to the conventional Euler integration scheme for Brownian dynamics, the new method can reduce the wall-clock time for integrating trajectories of a given length by more than three orders of magnitude in the former system and more than two in the latter. This new method for parallelizing MD in the dimension of time can be trivially combined with algorithms for parallelizing the MD force evaluation to achieve further speedup.
大规模并行计算机架构为长时间尺度分子动力学 (MD) 模拟的性能创造了新的机会。在这里,我们引入了路径加速分子动力学方法,该方法利用分布式计算通过对随机 MD 时间步长进行并行化来减少 MD 模拟的运行时间。系统随时间演化的边缘分布用路径积分表示,这使得可以使用路径采样技术对 MD 轨迹进行数值积分。通过相对于时间并行化路径作用的评估,并从非平衡分布初始化路径构型,该算法能够在给定的运行时间内显著加快可以集成的 MD 轨迹的长度。该方法已应用于布朗动力学,尽管它可推广到包括开放系统在内的其他随机运动方程。我们将该方法应用于两个简单的系统,一个谐振子和一个 Lennard-Jones 液体,并表明与布朗动力学的传统 Euler 积分方案相比,该新方法可以在前一个系统中将给定长度轨迹的运行时间减少三个数量级以上,在后一个系统中减少两个数量级以上。这种用于时间维度上并行化 MD 的新方法可以与用于并行化 MD 力评估的算法简单地组合,以实现进一步的加速。