Suppr超能文献

一种使用自动3D分析评估儿童睡眠相关节律性运动障碍的新方法。

A Novel Approach to Assess Sleep-Related Rhythmic Movement Disorder in Children Using Automatic 3D Analysis.

作者信息

Gall Markus, Kohn Bernhard, Wiesmeyr Christoph, van Sluijs Rachel M, Wilhelm Elisabeth, Rondei Quincy, Jäger Lukas, Achermann Peter, Landolt Hans-Peter, Jenni Oskar G, Riener Robert, Garn Heinrich, Hill Catherine M

机构信息

Sensing and Vision Solutions, AIT Austrian Institute of Technology GmbH, Vienna, Austria.

Sensory-Motor Systems Lab, ETH Zurich, Zurich, Switzerland.

出版信息

Front Psychiatry. 2019 Oct 16;10:709. doi: 10.3389/fpsyt.2019.00709. eCollection 2019.

Abstract

Unlike other episodic sleep disorders in childhood, there are no agreed severity indices for rhythmic movement disorder. While movements can be characterized in detail by polysomnography, in our experience most children inhibit rhythmic movement during polysomnography. Actigraphy and home video allow assessment in the child's own environment, but both have limitations. Standard actigraphy analysis algorithms fail to differentiate rhythmic movements from other movements. Manual annotation of 2D video is time consuming. We aimed to develop a sensitive, reliable method to detect and quantify rhythmic movements using marker free and automatic 3D video analysis. Patients with rhythmic movement disorder (n = 6, 4 male) between age 5 and 14 years (M: 9.0 years, SD: 4.2 years) spent three nights in the sleep laboratory as part of a feasibility study (https://clinicaltrials.gov/ct2/show/NCT03528096). 2D and 3D video data recorded during the adaptation and baseline nights were analyzed. One ceiling-mounted camera captured 3D depth images, while another recorded 2D video. We developed algorithms to analyze the characteristics of rhythmic movements and built a classifier to distinguish between rhythmic and non-rhythmic movements based on 3D video data alone. Data from 3D automated analysis were compared to manual 2D video annotations to assess algorithm performance. Novel indices were developed, specifically the rhythmic movement index, frequency index, and duration index, to better characterize severity of rhythmic movement disorder in children. Automatic 3D video analysis demonstrated high levels of agreement with the manual approach indicated by a Cohen's kappa >0.9 and F1-score >0.9. We also demonstrated how rhythmic movement assessment can be improved using newly introduced indices illustrated with plots for ease of visualization. 3D video technology is widely available and can be readily integrated into sleep laboratory settings. Our automatic 3D video analysis algorithm yields reliable quantitative information about rhythmic movements, reducing the burden of manual scoring. Furthermore, we propose novel rhythmic movement disorder severity indices that offer a means to standardize measurement of this disorder in both clinical and research practice. The significance of the results is limited due to the nature of a feasibility study and its small number of samples. A larger follow up study is needed to confirm presented results.

摘要

与儿童期的其他发作性睡眠障碍不同,节律性运动障碍目前尚无公认的严重程度指标。虽然多导睡眠图可以详细描述这些运动,但根据我们的经验,大多数儿童在多导睡眠图检查期间会抑制节律性运动。活动记录仪和家庭录像可以在儿童自己的环境中进行评估,但两者都有局限性。标准的活动记录仪分析算法无法将节律性运动与其他运动区分开来。二维视频的人工标注很耗时。我们旨在开发一种灵敏、可靠的方法,使用无标记自动三维视频分析来检测和量化节律性运动。作为一项可行性研究(https://clinicaltrials.gov/ct2/show/NCT03528096)的一部分,6名年龄在5至14岁之间(平均年龄:9.0岁,标准差:4.2岁)的节律性运动障碍患者(4名男性)在睡眠实验室度过了三个晚上。对适应期和基线期晚上记录的二维和三维视频数据进行了分析。一个天花板安装的摄像头捕捉三维深度图像,另一个记录二维视频。我们开发了算法来分析节律性运动的特征,并建立了一个分类器,仅基于三维视频数据区分节律性和非节律性运动。将三维自动分析的数据与二维视频人工标注进行比较,以评估算法性能。我们开发了新的指标,特别是节律性运动指数、频率指数和持续时间指数,以更好地表征儿童节律性运动障碍的严重程度。自动三维视频分析与人工方法显示出高度一致性,科恩kappa系数>0.9,F1分数>0.9。我们还展示了如何使用新引入的指标(用图表说明以便于可视化)来改进节律性运动评估。三维视频技术广泛可用,并且可以很容易地集成到睡眠实验室环境中。我们的自动三维视频分析算法产生了关于节律性运动的可靠定量信息,减轻了人工评分的负担。此外,我们提出了新的节律性运动障碍严重程度指标,为在临床和研究实践中标准化该障碍的测量提供了一种方法。由于可行性研究的性质及其样本数量较少,结果的意义有限。需要进行更大规模的后续研究来证实所呈现的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a88b/6806394/e0c01a00b5a5/fpsyt-10-00709-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验