Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, 741246, India.
Soft Matter. 2019 Nov 28;15(44):8976-8981. doi: 10.1039/c9sm01058k. Epub 2019 Nov 4.
We provide a quantitative description of the memory effects existing in the apparently random Markovian dynamics of a pair of optically trapped colloidal microparticles in water. The particles are trapped in very close proximity to each other such that the resultant hydrodynamic interactions lead to non-Markovian signatures manifested by the double exponential auto-correlation function for the Brownian motion of each particle. In connection with the memory effects, we quantify the storage of energy in terms of various system parameters and demonstrate that a pair of Markovian particles - confined in individual optical traps in a viscous fluid - can be described in the framework of a single Brownian particle in a viscoelastic medium. We define and quantify the equivalent storage and loss moduli of the two-particle system, and show experimentally that the memory effects are maximized at a certain trap stiffness ratio, and reduce with increasing particle separation. The technique can be generally used to determine the effective viscoelastic parameters of any such fluid-particle systems, and can thus help understand the interactions between active particles mediated by simple or complex fluids.
我们提供了一种定量描述,即在水相中一对光捕获胶体微粒子的明显随机马尔可夫动力学中存在的记忆效应。这些粒子被捕获得非常接近彼此,以至于由此产生的流体动力学相互作用导致非马尔可夫特征,表现为每个粒子布朗运动的双指数自相关函数。关于记忆效应,我们根据各种系统参数来量化能量的存储,并证明一对马尔可夫粒子 - 被限制在粘性流体中的单独光阱中 - 可以在粘弹性介质中的单个布朗粒子的框架内进行描述。我们定义并量化了两粒子系统的等效存储和损耗模量,并实验证明记忆效应在一定的阱刚度比下最大化,并随着粒子分离的增加而减小。该技术通常可用于确定任何此类流体-粒子系统的有效粘弹性参数,从而有助于理解由简单或复杂流体介导的活性粒子之间的相互作用。