Suppr超能文献

一种人机协同深度学习范式,用于儿童协同视觉评估。

A human-in-the-loop deep learning paradigm for synergic visual evaluation in children.

机构信息

School of Computer Science and Technology, Xidian University, Xi'an 710071, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.

出版信息

Neural Netw. 2020 Feb;122:163-173. doi: 10.1016/j.neunet.2019.10.003. Epub 2019 Oct 16.

Abstract

Visual development during early childhood is a vital process. Examining the visual acuity of children is essential for early detection of visual abnormalities, but performing visual examination in children is challenging. Here, we developed a human-in-the-loop deep learning (DL) paradigm that combines traditional vision examination and DL with integration of software and hardware, thus facilitating the execution of vision examinations, offsetting the shortcomings of human doctors, and improving the abilities of both DL and doctors to evaluate the vision of children. Because this paradigm contains two rounds (a human round and DL round), doctors can learn from DL and the two can mutually supervise each other such that the precision of the DL system in evaluating the visual acuity of children is improved. Based on DL-based object localization and image identification, the experiences of doctors and the videos captured in the first round, the DL system in the second round can simulate doctors in evaluating the visual acuity of children with a final accuracy of 75.54%. For comparison, we also assessed an automatic deep learning method that did not consider the experiences of doctors, but its performance was not satisfactory. This entire paradigm can evaluate the visual acuity of children more accurately than humans alone. Furthermore, the paradigm facilitates automatic evaluation of the vision of children with a wearable device.

摘要

儿童早期视觉发育是一个至关重要的过程。检查儿童的视力敏锐度对于早期发现视觉异常至关重要,但对儿童进行视力检查具有挑战性。在这里,我们开发了一种人机交互深度学习 (DL) 范式,该范式将传统的视力检查与 DL 相结合,并集成了软件和硬件,从而便于进行视力检查,弥补了人类医生的不足,并提高了 DL 和医生评估儿童视力的能力。由于该范式包含两轮(一轮是人类,一轮是 DL),医生可以从 DL 中学习,两者可以相互监督,从而提高 DL 系统评估儿童视力敏锐度的准确性。基于基于 DL 的目标定位和图像识别,以及医生在第一轮中的经验和拍摄的视频,第二轮中的 DL 系统可以模拟医生评估儿童视力敏锐度,最终准确率达到 75.54%。相比之下,我们还评估了一种不考虑医生经验的自动深度学习方法,但性能并不理想。整个范式可以比人类单独评估儿童的视力更准确。此外,该范式还可以通过可穿戴设备实现儿童视力的自动评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验