Suppr超能文献

基于深度学习和偏最小二乘回归的 CT 低对比度病灶检测任务模型观察器。

A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.

出版信息

Med Phys. 2019 May;46(5):2052-2063. doi: 10.1002/mp.13500. Epub 2019 Apr 1.

Abstract

PURPOSE

This work aims to develop a new framework of image quality assessment using deep learning-based model observer (DL-MO) and to validate it in a low-contrast lesion detection task that involves CT images with patient anatomical background.

METHODS

The DL-MO was developed using the transfer learning strategy to incorporate a pretrained deep convolutional neural network (CNN), a partial least square regression discriminant analysis (PLS-DA) model and an internal noise component. The CNN was previously trained to achieve the state-of-the-art classification accuracy over a natural image database. The earlier layers of the CNN were used as a deep feature extractor, with the assumption that similarity exists between the CNN and the human visual system. The PLSR model was used to further engineer the deep feature for the lesion detection task in CT images. The internal noise component was incorporated to model the inefficiency and variability of human observer (HO) performance, and to generate the ultimate DL-MO test statistics. Seven abdominal CT exams were retrospectively collected from the same type of CT scanners. To compare DL-MO with HO, 12 experimental conditions with varying lesion size, lesion contrast, radiation dose, and reconstruction types were generated, each condition with 154 trials. CT images of a real liver metastatic lesion were numerically modified to generate lesion models with four lesion sizes (5, 7, 9, and 11 mm) and three contrast levels (15, 20, and 25 HU). The lesions were inserted into patient liver images using a projection-based method. A validated noise insertion tool was used to synthesize CT exams with 50% and 25% of routine radiation dose level. CT images were reconstructed using the weighted filtered back projection algorithm and an iterative reconstruction algorithm. Four medical physicists performed a two-alternative forced choice (2AFC) detection task (with multislice scrolling viewing mode) on patient images across the 12 experimental conditions. DL-MO was operated on the same datasets. Statistical analyses were performed to evaluate the correlation and agreement between DL-MO and HO.

RESULTS

A statistically significant positive correlation was observed between DL-MO and HO for the 2AFC low-contrast detection task that involves patient liver background. The corresponding Pearson product moment correlation coefficient was 0.986 [95% confidence interval (0.950, 0.996)]. Bland-Altman agreement analysis did not indicate statistically significant differences.

CONCLUSIONS

The proposed DL-MO is highly correlated with HO in a low-contrast detection task that involves realistic patient liver background. This study demonstrated the potential of the proposed DL-MO to assess image quality directly based on patient images in realistic, clinically relevant CT tasks.

摘要

目的

本研究旨在开发一种新的基于深度学习模型观察者(DL-MO)的图像质量评估框架,并在涉及 CT 图像和患者解剖背景的低对比度病变检测任务中验证其有效性。

方法

DL-MO 采用迁移学习策略开发,包括一个预先训练的深度卷积神经网络(CNN)、偏最小二乘回归判别分析(PLS-DA)模型和内部噪声分量。该 CNN 之前经过训练,可在自然图像数据库中实现最先进的分类准确性。CNN 的早期层用作深度特征提取器,假设 CNN 与人类视觉系统之间存在相似性。PLSR 模型用于进一步针对 CT 图像中的病变检测任务对深度特征进行工程化处理。内部噪声分量的加入是为了模拟人类观察者(HO)性能的效率低下和可变性,并生成最终的 DL-MO 测试统计量。从相同类型的 CT 扫描仪中回顾性收集了七个腹部 CT 检查。为了比较 DL-MO 与 HO,生成了 12 种具有不同病变大小、病变对比度、辐射剂量和重建类型的实验条件,每种条件有 154 次试验。使用数值方法修改真实肝脏转移性病变的 CT 图像,生成四个病变大小(5、7、9 和 11mm)和三个对比水平(15、20 和 25HU)的病变模型。使用基于投影的方法将病变插入患者肝脏图像中。使用经过验证的噪声插入工具,合成具有常规辐射剂量水平的 50%和 25%的 CT 检查。使用加权滤波反投影算法和迭代重建算法对 CT 图像进行重建。四位医学物理学家在 12 种实验条件下的患者图像上执行了二项式迫选(2AFC)检测任务(使用多切片滚动查看模式)。DL-MO 对相同数据集进行操作。进行统计分析以评估 DL-MO 和 HO 之间的相关性和一致性。

结果

对于涉及患者肝脏背景的低对比度检测任务,DL-MO 与 HO 之间存在显著的正相关。相应的皮尔逊积矩相关系数为 0.986[95%置信区间(0.950,0.996)]。Bland-Altman 一致性分析未显示出统计学差异。

结论

在所提出的涉及现实患者肝脏背景的低对比度检测任务中,所提出的 DL-MO 与 HO 高度相关。这项研究证明了所提出的 DL-MO 直接基于患者图像在现实、临床相关的 CT 任务中评估图像质量的潜力。

相似文献

引用本文的文献

10
Deep Learning Based Model Observer by U-Net.基于U-Net的深度学习模型观察者。
Proc SPIE Int Soc Opt Eng. 2020 Feb;11316. doi: 10.1117/12.2549687. Epub 2020 Mar 16.

本文引用的文献

7
Image quality in CT: From physical measurements to model observers.CT中的图像质量:从物理测量到模型观察者
Phys Med. 2015 Dec;31(8):823-843. doi: 10.1016/j.ejmp.2015.08.007. Epub 2015 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验