Raman Vinod K, Burger Tobias, Lenert Andrej
Opt Express. 2019 Oct 28;27(22):31757-31772. doi: 10.1364/OE.27.031757.
With advances in thermophotovoltaic (TPV) cells enabling recycling of sub-bandgap photons, a key barrier to reaching high prototype efficiencies has become radiative losses to parasitic high-emissivity regions, such as heavily doped contact regions, defects in coatings, and inactive areas. Here, we examine the impact of such radiative losses on the performance of various candidate cell materials, including GaAs, Si, InGaAsP, InGaAs, GaSb, and InGaAsSb. The ability of a TPV design to resist this performance loss is termed "radiation-sink tolerance" (RST). We show that RST is directly proportional to the spectral overlap between the absorptance profile of the cell and the emission profile of the emitter, which can be improved by adding a lower-bandgap absorber, increasing the emitter temperature, and utilizing a selective emitter. Our RST expressions can be used to estimate the efficiency of a prototypical TPV generator based on a component-level measurement.
随着热光伏(TPV)电池技术的进步,使得子带隙光子能够被回收利用,实现高原型效率的一个关键障碍已变成向寄生高发射率区域的辐射损失,例如重掺杂接触区域、涂层中的缺陷以及非活性区域。在此,我们研究了这种辐射损失对各种候选电池材料性能的影响,这些材料包括砷化镓(GaAs)、硅(Si)、磷化铟镓砷(InGaAsP)、铟镓砷(InGaAs)、锑化镓(GaSb)以及铟镓砷锑(InGaAsSb)。TPV设计抵抗这种性能损失的能力被称为“辐射阱耐受性”(RST)。我们表明,RST与电池的吸收谱和发射极的发射谱之间的光谱重叠直接成比例,这可以通过添加较低带隙吸收体、提高发射极温度以及使用选择性发射极来改善。我们的RST表达式可用于基于组件级测量来估计原型TPV发电机的效率。