Suppr超能文献

基于视觉的多旋翼飞行器跟随使用合成学习技术。

Vision-Based Multirotor Following Using Synthetic Learning Techniques.

机构信息

Computer Vision and Aerial Robotics group, Centre for Automation and Robotics, Universidad Politécnica de Madrid (UPM-CSIC), Calle Jose Gutierrez Abascal 2, 28006 Madrid, Spain.

Artificial Intelligence group, University of Groningen, 9712 Groningen, The Netherlands.

出版信息

Sensors (Basel). 2019 Nov 4;19(21):4794. doi: 10.3390/s19214794.

Abstract

Deep- and reinforcement-learning techniques have increasingly required large sets of real data to achieve stable convergence and generalization, in the context of image-recognition, object-detection or motion-control strategies. On this subject, the research community lacks robust approaches to overcome unavailable real-world extensive data by means of realistic synthetic-information and domain-adaptation techniques. In this work, synthetic-learning strategies have been used for the vision-based autonomous following of a noncooperative multirotor. The complete maneuver was learned with synthetic images and high-dimensional low-level continuous robot states, with deep- and reinforcement-learning techniques for object detection and motion control, respectively. A novel motion-control strategy for object following is introduced where the camera gimbal movement is coupled with the multirotor motion during the multirotor following. Results confirm that our present framework can be used to deploy a vision-based task in real flight using synthetic data. It was extensively validated in both simulated and real-flight scenarios, providing proper results (following a multirotor up to 1.3 m/s in simulation and 0.3 m/s in real flights).

摘要

深度和强化学习技术在图像识别、目标检测或运动控制策略等领域,越来越需要大量真实数据才能实现稳定的收敛和泛化。在这个主题上,研究界缺乏通过现实的合成信息和领域自适应技术来克服无法获得的真实世界广泛数据的稳健方法。在这项工作中,合成学习策略已被用于基于视觉的非合作多旋翼自主跟随。使用合成图像和高维低级别连续机器人状态,通过深度和强化学习技术分别进行对象检测和运动控制,完成了整个动作的学习。引入了一种新颖的目标跟随运动控制策略,其中在多旋翼跟随期间将相机万向架运动与多旋翼运动耦合。结果证实,我们目前的框架可以使用合成数据在真实飞行中部署基于视觉的任务。它在模拟和真实飞行场景中都进行了广泛验证,提供了适当的结果(在模拟中以 1.3 m/s 的速度跟随多旋翼,在真实飞行中以 0.3 m/s 的速度跟随)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485e/6864684/a93528e6f5b1/sensors-19-04794-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验