Zhang Ziyan, Yan Jingqi, Bowman Aaron B, Bryan Miles R, Singh Rajat, Aschner Michael
Department of Molecular Pharmacology, Albert Einstein College of Medicine , Bronx, NY, USA.
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine , Bronx, NY, USA.
Autophagy. 2020 Aug;16(8):1506-1523. doi: 10.1080/15548627.2019.1688488. Epub 2019 Nov 24.
Epidemiological and clinical studies have long shown that exposure to high levels of heavy metals are associated with increased risks of neurodegenerative diseases. It is widely accepted that autophagic dysfunction is involved in pathogenesis of various neurodegenerative disorders; however, the role of heavy metals in regulation of macroautophagy/autophagy is unclear. Here, we show that manganese (Mn) induces a decline in nuclear localization of TFEB (transcription factor EB), a master regulator of the autophagy-lysosome pathway, leading to autophagic dysfunction in astrocytes of mouse striatum. We further show that Mn exposure suppresses autophagic-lysosomal degradation of mitochondria and induces accumulation of unhealthy mitochondria. Activation of autophagy by rapamycin or TFEB overexpression ameliorates Mn-induced mitochondrial respiratory dysfunction and reactive oxygen species (ROS) generation in astrocytes, suggesting a causal relation between autophagic failure and mitochondrial dysfunction in Mn toxicity. Taken together, our data demonstrate that Mn inhibits TFEB activity, leading to impaired autophagy that is causally related to mitochondrial dysfunction in astrocytes. These findings reveal a previously unappreciated role for Mn in dysregulation of autophagy and identify TFEB as a potential therapeutic target to mitigate Mn toxicity.
BECN1: beclin 1; CTSD: cathepsin D; DMEM: Dulbecco's Modified Eagle Medium; GFAP: glial fibrillary acid protein; GFP: green fluorescent protein; HBSS: hanks balanced salt solution; LAMP: lysosomal-associated membrane protein; LDH: lactate dehydrogenase; Lys Inh: lysosomal inhibitors; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; Mn: manganese; MTOR: mechanistic target of rapamycin kinase; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PI: propidium iodide; ROS: reactive oxygen species; s.c.: subcutaneous; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB.
长期以来,流行病学和临床研究表明,接触高浓度重金属与神经退行性疾病风险增加有关。人们普遍认为自噬功能障碍参与了各种神经退行性疾病的发病机制;然而,重金属在调控巨自噬/自噬中的作用尚不清楚。在此,我们表明锰(Mn)诱导自噬-溶酶体途径的主要调节因子转录因子EB(TFEB)的核定位下降,导致小鼠纹状体星形胶质细胞中的自噬功能障碍。我们进一步表明,锰暴露会抑制线粒体的自噬-溶酶体降解,并诱导不健康线粒体的积累。雷帕霉素激活自噬或TFEB过表达可改善锰诱导的星形胶质细胞线粒体呼吸功能障碍和活性氧(ROS)生成,表明自噬功能障碍与锰毒性中的线粒体功能障碍之间存在因果关系。综上所述,我们的数据表明锰抑制TFEB活性,导致自噬受损,这与星形胶质细胞中的线粒体功能障碍存在因果关系。这些发现揭示了锰在自噬失调中以前未被认识的作用,并确定TFEB是减轻锰毒性的潜在治疗靶点。
BECN1:Beclin 1;CTSD:组织蛋白酶D;DMEM:杜氏改良 Eagle培养基;GFAP:胶质纤维酸性蛋白;GFP:绿色荧光蛋白;HBSS:汉克斯平衡盐溶液;LAMP:溶酶体相关膜蛋白;LDH:乳酸脱氢酶;Lys Inh:溶酶体抑制剂;MAP1LC3/LC3:微管相关蛋白1轻链3;MAPK:丝裂原活化蛋白激酶;Mn:锰;MTOR:雷帕霉素激酶的机制性靶点;OCR:氧消耗率;PBS:磷酸盐缓冲盐水;PFA:多聚甲醛;PI:碘化丙啶;ROS:活性氧;s.c.:皮下;SQSTM1/p62:聚集体蛋白1;TEM:透射电子显微镜;TFEB:转录因子EB。