Suppr超能文献

利用 VAPOR 对短读序列进行流感分类,有助于为常规监测应用程序构建稳健的映射管道和检测人畜共患病株。

Influenza classification from short reads with VAPOR facilitates robust mapping pipelines and zoonotic strain detection for routine surveillance applications.

机构信息

Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.

Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK.

出版信息

Bioinformatics. 2020 Mar 1;36(6):1681-1688. doi: 10.1093/bioinformatics/btz814.

Abstract

MOTIVATION

Influenza viruses represent a global public health burden due to annual epidemics and pandemic potential. Due to a rapidly evolving RNA genome, inter-species transmission, intra-host variation, and noise in short-read data, reads can be lost during mapping, and de novo assembly can be time consuming and result in misassembly. We assessed read loss during mapping and designed a graph-based classifier, VAPOR, for selecting mapping references, assembly validation and detection of strains of non-human origin.

RESULTS

Standard human reference viruses were insufficient for mapping diverse influenza samples in simulation. VAPOR retrieved references for 257 real whole-genome sequencing samples with a mean of >99.8% identity to assemblies, and increased the proportion of mapped reads by up to 13.3% compared to standard references. VAPOR has the potential to improve the robustness of bioinformatics pipelines for surveillance and could be adapted to other RNA viruses.

AVAILABILITY AND IMPLEMENTATION

VAPOR is available at https://github.com/connor-lab/vapor.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

流感病毒由于每年的流行和大流行的潜力,对全球公共卫生构成了负担。由于 RNA 基因组的快速进化、种间传播、宿主内变异以及短读长数据中的噪声,在映射过程中可能会丢失读取,从头组装可能既耗时又容易导致组装错误。我们评估了映射过程中的读取丢失,并设计了基于图的分类器 VAPOR,用于选择映射参考、组装验证和检测非人类来源的菌株。

结果

标准的人类参考病毒在模拟中不足以映射多样化的流感样本。VAPOR 检索了 257 个真实全基因组测序样本的参考,与组装体的平均相似度>99.8%,与标准参考相比,增加了多达 13.3%的映射读取比例。VAPOR 有可能提高监测的生物信息学管道的稳健性,并且可以适应其他 RNA 病毒。

可用性和实现

VAPOR 可在 https://github.com/connor-lab/vapor 上获得。

补充信息

补充数据可在“Bioinformatics”在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ee/7703727/f9f1e37aa4a5/btz814f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验