Suppr超能文献

INSaFLU:一个自动化的、基于网络的开放型生物信息学工具套件,用于基于流感全基因组测序的监测,从读取开始。

INSaFLU: an automated open web-based bioinformatics suite "from-reads" for influenza whole-genome-sequencing-based surveillance.

机构信息

Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016, Lisbon, Portugal.

Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.

出版信息

Genome Med. 2018 Jun 29;10(1):46. doi: 10.1186/s13073-018-0555-0.

Abstract

BACKGROUND

A new era of flu surveillance has already started based on the genetic characterization and exploration of influenza virus evolution at whole-genome scale. Although this has been prioritized by national and international health authorities, the demanded technological transition to whole-genome sequencing (WGS)-based flu surveillance has been particularly delayed by the lack of bioinformatics infrastructures and/or expertise to deal with primary next-generation sequencing (NGS) data.

RESULTS

We developed and implemented INSaFLU ("INSide the FLU"), which is the first influenza-oriented bioinformatics free web-based suite that deals with primary NGS data (reads) towards the automatic generation of the output data that are actually the core first-line "genetic requests" for effective and timely influenza laboratory surveillance (e.g., type and sub-type, gene and whole-genome consensus sequences, variants' annotation, alignments and phylogenetic trees). By handling NGS data collected from any amplicon-based schema, the implemented pipeline enables any laboratory to perform multi-step software intensive analyses in a user-friendly manner without previous advanced training in bioinformatics. INSaFLU gives access to user-restricted sample databases and projects management, being a transparent and flexible tool specifically designed to automatically update project outputs as more samples are uploaded. Data integration is thus cumulative and scalable, fitting the need for a continuous epidemiological surveillance during the flu epidemics. Multiple outputs are provided in nomenclature-stable and standardized formats that can be explored in situ or through multiple compatible downstream applications for fine-tuned data analysis. This platform additionally flags samples as "putative mixed infections" if the population admixture enrolls influenza viruses with clearly distinct genetic backgrounds, and enriches the traditional "consensus-based" influenza genetic characterization with relevant data on influenza sub-population diversification through a depth analysis of intra-patient minor variants. This dual approach is expected to strengthen our ability not only to detect the emergence of antigenic and drug resistance variants but also to decode alternative pathways of influenza evolution and to unveil intricate routes of transmission.

CONCLUSIONS

In summary, INSaFLU supplies public health laboratories and influenza researchers with an open "one size fits all" framework, potentiating the operationalization of a harmonized multi-country WGS-based surveillance for influenza virus. INSaFLU can be accessed through https://insaflu.insa.pt .

摘要

背景

基于全基因组规模的流感病毒遗传特征分析和进化探索,新的流感监测时代已经开始。尽管这已被国家和国际卫生当局列为优先事项,但由于缺乏处理初级下一代测序 (NGS) 数据的生物信息学基础设施和/或专业知识,向基于全基因组测序 (WGS) 的流感监测的技术转型尤其滞后。

结果

我们开发并实施了 INSaFLU(“流感内部”),这是第一个面向流感的生物信息学免费网络套件,用于处理初级 NGS 数据(读取),以自动生成实际上是有效和及时流感实验室监测的核心一线“遗传请求”的输出数据(例如,类型和亚型、基因和全基因组共识序列、变体注释、比对和系统发育树)。通过处理基于任何扩增子方案收集的 NGS 数据,该实施的管道使任何实验室都能够以用户友好的方式执行多步骤软件密集型分析,而无需事先进行生物信息学方面的高级培训。INSaFLU 允许访问用户受限的样本数据库和项目管理,是一个透明且灵活的工具,专门设计用于随着更多样本的上传自动更新项目输出。因此,数据集成是累积和可扩展的,符合流感流行期间进行连续流行病学监测的需要。以命名稳定和标准化的格式提供多种输出,可就地或通过多个兼容的下游应用程序进行探索,以进行精细数据分析。如果人群混合了具有明显不同遗传背景的流感病毒,则该平台还会将样本标记为“疑似混合感染”,并通过对患者内小变体的深度分析,丰富传统的“基于共识”的流感遗传特征,增加流感亚群多样化的相关数据。这种双重方法有望增强我们不仅检测抗原和耐药性变异体出现的能力,而且还能解码流感进化的替代途径,并揭示传播的复杂途径。

结论

总之,INSaFLU 为公共卫生实验室和流感研究人员提供了一个开放的“一刀切”框架,为基于 WGS 的流感病毒的协调多国监测提供了操作化支持。可以通过 https://insaflu.insa.pt 访问 INSaFLU。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc63/6027769/d7c99d5ec682/13073_2018_555_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验