Suppr超能文献

LDeform:用于肺癌自适应放疗的纵向形变分析。

LDeform: Longitudinal deformation analysis for adaptive radiotherapy of lung cancer.

机构信息

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.

Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.

出版信息

Med Phys. 2020 Jan;47(1):132-141. doi: 10.1002/mp.13907. Epub 2019 Nov 26.

Abstract

PURPOSE

Conventional radiotherapy for large lung tumors is given over several weeks, during which the tumor typically regresses in a highly nonuniform and variable manner. Adaptive radiotherapy would ideally follow these shape changes, but we need an accurate method to extrapolate tumor shape changes. We propose a computationally efficient algorithm to quantitate tumor surface shape changes that makes minimal assumptions, identifies fixed points, and can be used to predict future tumor geometrical response.

METHODS

A novel combination of nonrigid iterative closest point (ICP) and local shape-preserving map algorithms, LDeform, is developed to enable visualization, prediction, and categorization of both diffeomorphic and nondiffeomorphic tumor deformations during an extended course of radiotherapy.

RESULTS

We tested and validated our technique on 31 longitudinal CT/MRI subjects, with five to nine time points each. Based on this tumor deformation analysis, regions of local growth, shrinkage, and anchoring are identified and tracked across multiple time points. This categorization in turn represents a rational biomarker of local response. Results demonstrate useful predictive power, with an averaged Dice coefficient and surface mean-squared error of 0.85 and 2.8 mm, respectively, over all images.

CONCLUSIONS

We conclude that the LDeform algorithm can facilitate the adaptive decision-making process during lung cancer radiotherapy.

摘要

目的

对于大型肺部肿瘤,传统的放射治疗需要数周的时间,在此期间,肿瘤通常会以高度不均匀和可变的方式消退。自适应放射治疗理想情况下会遵循这些形状变化,但我们需要一种准确的方法来推断肿瘤形状的变化。我们提出了一种计算效率高的算法,可以量化肿瘤表面形状的变化,该算法做出的假设最少,可以识别固定点,并可用于预测未来的肿瘤几何响应。

方法

开发了一种新颖的非刚性迭代最近点(ICP)和局部保形映射算法(LDeform)的组合,以实现可视化、预测和分类在放射治疗过程中的扩展过程中,肿瘤的变形既有相似变形也有非相似变形。

结果

我们在 31 名纵向 CT/MRI 患者上测试和验证了我们的技术,每个患者有 5 到 9 个时间点。基于肿瘤变形分析,在多个时间点上识别和跟踪局部生长、收缩和固定区域。这种分类反过来又代表了局部反应的合理生物标志物。结果表明具有有用的预测能力,所有图像的平均 Dice 系数和表面均方误差分别为 0.85 和 2.8mm。

结论

我们得出结论,LDeform 算法可以促进肺癌放射治疗过程中的自适应决策过程。

相似文献

1
LDeform: Longitudinal deformation analysis for adaptive radiotherapy of lung cancer.
Med Phys. 2020 Jan;47(1):132-141. doi: 10.1002/mp.13907. Epub 2019 Nov 26.
2
Tracking tumor boundary using point correspondence for adaptive radio therapy.
Comput Methods Programs Biomed. 2018 Oct;165:187-195. doi: 10.1016/j.cmpb.2018.08.002. Epub 2018 Aug 22.
5
Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance.
Phys Med Biol. 2017 Dec 29;63(1):015027. doi: 10.1088/1361-6560/aa990e.
8
Fully automatic deformable registration of pretreatment MRI/CT for image-guided prostate radiotherapy planning.
Med Phys. 2017 Dec;44(12):6447-6455. doi: 10.1002/mp.12629. Epub 2017 Nov 6.

引用本文的文献

2
Image-Guided Percutaneous Ablation for Primary and Metastatic Tumors.
Diagnostics (Basel). 2022 May 24;12(6):1300. doi: 10.3390/diagnostics12061300.
3
Adaptive Radiation Therapy in the Treatment of Lung Cancer: An Overview of the Current State of the Field.
Front Oncol. 2021 Nov 29;11:770382. doi: 10.3389/fonc.2021.770382. eCollection 2021.
4
Deformation driven Seq2Seq longitudinal tumor and organs-at-risk prediction for radiotherapy.
Med Phys. 2021 Sep;48(9):4784-4798. doi: 10.1002/mp.15075. Epub 2021 Aug 3.

本文引用的文献

1
Validating a Predictive Atlas of Tumor Shrinkage for Adaptive Radiotherapy of Locally Advanced Lung Cancer.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):978-986. doi: 10.1016/j.ijrobp.2018.05.056. Epub 2018 Jun 2.
2
LMap: Shape-Preserving Local Mappings for Biomedical Visualization.
IEEE Trans Vis Comput Graph. 2018 Dec;24(12):3111-3122. doi: 10.1109/TVCG.2017.2772237. Epub 2017 Nov 13.
3
A geometric atlas to predict lung tumor shrinkage for radiotherapy treatment planning.
Phys Med Biol. 2017 Jan 10;62(3):702-714. doi: 10.1088/1361-6560/aa54f9.
4
Corresponding Supine and Prone Colon Visualization Using Eigenfunction Analysis and Fold Modeling.
IEEE Trans Vis Comput Graph. 2017 Jan;23(1):751-760. doi: 10.1109/TVCG.2016.2598791.
5
Spherical Parameterization Balancing Angle and Area Distortions.
IEEE Trans Vis Comput Graph. 2017 Jun;23(6):1663-1676. doi: 10.1109/TVCG.2016.2542073. Epub 2016 Mar 15.
6
Predictive treatment management: incorporating a predictive tumor response model into robust prospective treatment planning for non-small cell lung cancer.
Int J Radiat Oncol Biol Phys. 2014 Feb 1;88(2):446-52. doi: 10.1016/j.ijrobp.2013.10.038. Epub 2013 Dec 5.
7
Convergent iterative closest-point algorithm to accomodate anisotropic and inhomogenous localization error.
IEEE Trans Pattern Anal Mach Intell. 2012 Aug;34(8):1520-32. doi: 10.1109/TPAMI.2011.248.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验