Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
Med Phys. 2020 Jan;47(1):132-141. doi: 10.1002/mp.13907. Epub 2019 Nov 26.
Conventional radiotherapy for large lung tumors is given over several weeks, during which the tumor typically regresses in a highly nonuniform and variable manner. Adaptive radiotherapy would ideally follow these shape changes, but we need an accurate method to extrapolate tumor shape changes. We propose a computationally efficient algorithm to quantitate tumor surface shape changes that makes minimal assumptions, identifies fixed points, and can be used to predict future tumor geometrical response.
A novel combination of nonrigid iterative closest point (ICP) and local shape-preserving map algorithms, LDeform, is developed to enable visualization, prediction, and categorization of both diffeomorphic and nondiffeomorphic tumor deformations during an extended course of radiotherapy.
We tested and validated our technique on 31 longitudinal CT/MRI subjects, with five to nine time points each. Based on this tumor deformation analysis, regions of local growth, shrinkage, and anchoring are identified and tracked across multiple time points. This categorization in turn represents a rational biomarker of local response. Results demonstrate useful predictive power, with an averaged Dice coefficient and surface mean-squared error of 0.85 and 2.8 mm, respectively, over all images.
We conclude that the LDeform algorithm can facilitate the adaptive decision-making process during lung cancer radiotherapy.
对于大型肺部肿瘤,传统的放射治疗需要数周的时间,在此期间,肿瘤通常会以高度不均匀和可变的方式消退。自适应放射治疗理想情况下会遵循这些形状变化,但我们需要一种准确的方法来推断肿瘤形状的变化。我们提出了一种计算效率高的算法,可以量化肿瘤表面形状的变化,该算法做出的假设最少,可以识别固定点,并可用于预测未来的肿瘤几何响应。
开发了一种新颖的非刚性迭代最近点(ICP)和局部保形映射算法(LDeform)的组合,以实现可视化、预测和分类在放射治疗过程中的扩展过程中,肿瘤的变形既有相似变形也有非相似变形。
我们在 31 名纵向 CT/MRI 患者上测试和验证了我们的技术,每个患者有 5 到 9 个时间点。基于肿瘤变形分析,在多个时间点上识别和跟踪局部生长、收缩和固定区域。这种分类反过来又代表了局部反应的合理生物标志物。结果表明具有有用的预测能力,所有图像的平均 Dice 系数和表面均方误差分别为 0.85 和 2.8mm。
我们得出结论,LDeform 算法可以促进肺癌放射治疗过程中的自适应决策过程。