School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400.
Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322.
J Biol Chem. 2019 Dec 13;294(50):19111-19118. doi: 10.1074/jbc.RA119.010268. Epub 2019 Nov 6.
Live cell fluorescence imaging is the method of choice for studying dynamic processes, such as nuclear transport, vesicular trafficking, and virus entry and egress. However, endogenous cellular autofluorescence masks a useful fluorescence signal, limiting the ability to reliably visualize low-abundance fluorescent proteins. Here, we employed synchronously amplified fluorescence image recovery (SAFIRe), which optically alters ground photophysical dark state populations within fluorescent proteins to modulate and selectively detect their background-free emission. Using a photoswitchable rsFastLime fluorescent protein combined with a simple illumination and image-processing scheme, we demonstrate the utility of this approach for suppressing undesirable, unmodulatable fluorescence background. Significantly, we adapted this technique to different commercial wide-field and spinning-disk confocal microscopes, obtaining >10-fold improvements in signal to background. SAFIRe allowed visualization of rsFastLime targeted to mitochondria by efficiently suppressing endogenous autofluorescence or overexpressed cytosolic unmodulatable EGFP. Suppression of the overlapping EGFP signal provided a means to perform multiplexed imaging of rsFastLime and spectrally overlapping fluorophores. Importantly, we used SAFIRe to reliably visualize and track single rsFastLime-labeled HIV-1 particles in living cells exhibiting high and uneven autofluorescence signals. Time-lapse SAFIRe imaging can be performed for an extended period of time to visualize HIV-1 entry into cells. SAFIRe should be broadly applicable for imaging live cell dynamics with commercial microscopes, even in strongly autofluorescent cells or cells expressing spectrally overlapping fluorescent proteins.
活细胞荧光成像技术是研究核转运、囊泡运输、病毒进入和逸出等动态过程的首选方法。然而,内源性细胞自发荧光会掩盖有用的荧光信号,限制了可靠地可视化低丰度荧光蛋白的能力。在这里,我们采用了同步放大荧光图像恢复(SAFIRe)技术,该技术通过光学方式改变荧光蛋白中的基态光物理暗态群体,以调节和选择性地检测其无背景的发射。我们使用光可切换的 rsFastLime 荧光蛋白结合简单的照明和图像处理方案,证明了这种方法用于抑制不需要的、不可调节的荧光背景的实用性。值得注意的是,我们将这种技术适应于不同的商业宽场和旋转盘共聚焦显微镜,获得了 >10 倍的信号与背景比的提高。SAFIRe 允许通过有效地抑制内源性自发荧光或过表达的细胞质不可调节的 EGFP 来可视化靶向线粒体的 rsFastLime。抑制重叠的 EGFP 信号提供了一种对 rsFastLime 和光谱重叠荧光团进行多路复用成像的手段。重要的是,我们使用 SAFIRe 可靠地可视化和跟踪在具有高且不均匀自发荧光信号的活细胞中表达的单个 rsFastLime 标记的 HIV-1 颗粒。SAFIRe 可以进行长时间的延时成像,以可视化 HIV-1 进入细胞。SAFIRe 应该广泛适用于使用商业显微镜对活细胞动力学进行成像,即使在强自发荧光细胞或表达光谱重叠荧光蛋白的细胞中也是如此。