Zhang Ruikang, Chouket Raja, Plamont Marie-Aude, Kelemen Zsolt, Espagne Agathe, Tebo Alison G, Gautier Arnaud, Gissot Lionel, Faure Jean-Denis, Jullien Ludovic, Croquette Vincent, Le Saux Thomas
PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
2Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Saclay Plant Science (SPS), Université Paris-Saclay, Versailles, France.
Light Sci Appl. 2018 Nov 28;7:97. doi: 10.1038/s41377-018-0098-6. eCollection 2018.
Macroscale fluorescence imaging is increasingly used to observe biological samples. However, it may suffer from spectral interferences that originate from ambient light or autofluorescence of the sample or its support. In this manuscript, we built a simple and inexpensive fluorescence macroscope, which has been used to evaluate the performance of Speed OPIOM (Out of Phase Imaging after Optical Modulation), which is a reference-free dynamic contrast protocol, to selectively image reversibly photoswitchable fluorophores as labels against detrimental autofluorescence and ambient light. By tuning the intensity and radial frequency of the modulated illumination to the Speed OPIOM resonance and adopting a phase-sensitive detection scheme that ensures noise rejection, we enhanced the sensitivity and the signal-to-noise ratio for fluorescence detection in blot assays by factors of 50 and 10, respectively, over direct fluorescence observation under constant illumination. Then, we overcame the strong autofluorescence of growth media that are currently used in microbiology and realized multiplexed fluorescence observation of colonies of spectrally similar fluorescent bacteria with a unique configuration of excitation and emission wavelengths. Finally, we easily discriminated fluorescent labels from the autofluorescent and reflective background in labeled leaves, even under the interference of incident light at intensities that are comparable to sunlight. The proposed approach is expected to find multiple applications, from biological assays to outdoor observations, in fluorescence macroimaging.
宏观荧光成像越来越多地用于观察生物样品。然而,它可能会受到来自环境光、样品或其载体的自发荧光的光谱干扰。在本论文中,我们构建了一个简单且低成本的荧光显微镜,该显微镜已被用于评估Speed OPIOM(光学调制后异相成像)的性能,这是一种无参考动态对比协议,用于选择性地对可逆光开关荧光团进行成像,以作为针对有害自发荧光和环境光的标记。通过将调制照明的强度和径向频率调整到Speed OPIOM共振,并采用确保噪声抑制的相敏检测方案,与在恒定照明下的直接荧光观察相比,我们在印迹分析中分别将荧光检测的灵敏度和信噪比提高了50倍和10倍。然后,我们克服了目前微生物学中使用的生长培养基的强自发荧光,并通过独特的激发和发射波长配置实现了光谱相似荧光细菌菌落的多重荧光观察。最后,即使在与阳光强度相当的入射光干扰下,我们也能轻松地从标记叶片的自发荧光和反射背景中区分出荧光标记。预计所提出的方法将在荧光宏观成像中找到从生物分析到户外观察的多种应用。