Suppr超能文献

肌肉 2 视图,一个用于检测毛细血管到肌纤维界面的 CellProfiler 流水线,以及纤维类型特异性组织学的高内涵定量分析。

Muscle2View, a CellProfiler pipeline for detection of the capillary-to-muscle fiber interface and high-content quantification of fiber type-specific histology.

机构信息

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

Gnomics, Murcia, Spain.

出版信息

J Appl Physiol (1985). 2019 Dec 1;127(6):1698-1709. doi: 10.1152/japplphysiol.00257.2019. Epub 2019 Nov 7.

Abstract

Because manual immunohistochemical analysis of features such as skeletal muscle fiber typing, capillaries, myonuclei, and fiber size-related parameters is time consuming and prone to user subjectivity, automatic computational methods could allow for faster and more objective evaluation. Here, we developed Muscle2View, a free CellProfiler-based pipeline that integrates all key fiber-morphological variables, including the novel quantification of the capillary-to-fiber interface, in one single tool. Provided that the images are of sufficient quality and the settings are configured for the specific study, the pipeline allows for automatic and unsupervised analysis of fiber borders, myonuclei, capillaries, and morphometric parameters in a fiber type-specific manner from large batches of images in <10 min/tissue sample. The novel identification of the capillary-to-fiber interface allowed for the calculation of microvascular factors such as capillary contacts (CC), individual capillary-to-fiber ratio (C/Fi), and capillary-to-fiber perimeter exchange (CFPE) index. When comparing the Muscle2View pipeline to manual or semiautomatic analysis, overall the results revealed strong correlations. For several variables, however, there were differences (5-15%) between values computed by manual counting and Muscle2View, suggesting that the methods should not necessarily be used interchangeably. Collectively, we demonstrate that the Muscle2View pipeline can provide unbiased and high-content analysis of muscle cross-sectional immunohistochemistry images. In addition to the classical morphological measurements, the Muscle2View can identify the complex capillary-to-fiber network and myonuclear density in a fiber type-specific manner. This robust analysis is done in one single run within a user-friendly and flexible environment based on the free and widely used image software CellProfiler. Here, we developed a freely available CellProfiler-based pipeline termed Muscle2View, which provides unbiased, high-content analysis of muscle cross-sectional immunohistochemistry images. In addition to fiber typing, myonuclei counting, and the quantification of fiber type-specific morphological measurements, the Muscle2View pipeline can identify the complex capillary-to-fiber network from a batch of images within minutes. Thus, the Muscle2View is a viable tool for researchers aiming to quantify immunohistochemical variables from skeletal muscle biopsies.

摘要

由于手动免疫组织化学分析骨骼肌纤维类型、毛细血管、肌核和纤维大小相关参数等特征既耗时又容易受到用户主观性的影响,因此自动计算方法可以实现更快、更客观的评估。在这里,我们开发了 Muscle2View,这是一种基于 CellProfiler 的免费流水线,它集成了所有关键的纤维形态学变量,包括新的毛细血管-纤维界面定量,在一个单一的工具中。只要图像质量足够好,并且设置为特定研究配置,该流水线就允许以纤维类型特异性的方式对纤维边界、肌核、毛细血管和形态参数进行自动和无监督分析,从大量图像中在 <10 分钟/组织样本内完成。新的毛细血管-纤维界面的识别允许计算微血管因素,如毛细血管接触 (CC)、单个毛细血管-纤维比 (C/Fi) 和毛细血管-纤维周长交换 (CFPE) 指数。当将 Muscle2View 流水线与手动或半自动分析进行比较时,总体结果显示出很强的相关性。然而,对于几个变量,手动计数和 Muscle2View 计算的值之间存在差异 (5-15%),这表明这两种方法不一定可以互换使用。总的来说,我们证明了 Muscle2View 流水线可以提供肌肉横截面免疫组织化学图像的无偏和高内涵分析。除了经典的形态学测量,Muscle2View 还可以以纤维类型特异性的方式识别复杂的毛细血管-纤维网络和肌核密度。这种稳健的分析是在一个基于免费和广泛使用的图像软件 CellProfiler 的用户友好且灵活的环境中在单个运行中完成的。在这里,我们开发了一种免费的基于 CellProfiler 的流水线,称为 Muscle2View,它提供了肌肉横截面免疫组织化学图像的无偏、高内涵分析。除了纤维类型、肌核计数和纤维类型特异性形态学测量的定量,Muscle2View 流水线可以在几分钟内从一批图像中识别复杂的毛细血管-纤维网络。因此,Muscle2View 是研究人员从骨骼肌活检中定量免疫组织化学变量的一种可行工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验