Suppr超能文献

计算 ODE 模型的所有多参数解,以避免生物学误解。

Calculating all multiple parameter solutions of ODE models to avoid biological misinterpretations.

机构信息

Department of Information Engineering, University of Padova, Padova, 35131 Italy.

National Research Council (IEIIT-CNR) c/o Department of Information Engineering, University of Padova, Padova, 35131 Italy.

出版信息

Math Biosci Eng. 2019 Jul 11;16(6):6438-6453. doi: 10.3934/mbe.2019322.

Abstract

Biological system's dynamics are increasingly studied with nonlinear ordinary differential equations, whose parameters are estimated from input/output experimental data. Structural identifiability analysis addresses the theoretical question whether the inverse problem of recovering the unknown parameters from noise-free data is uniquely solvable (global), or if there is a finite (local), or an infinite number (non identifiable) of parameter values that generate identical input/output trajectories. In contrast, practical identifiability analysis aims to assess whether the experimental data provide information on the parameter estimates in terms of precision and accuracy. A main difference between the two identifiability approaches is that the former is mostly carried out analytically and provides exact results at a cost of increased computational complexity, while the latter is usually numerically tested by calculating statistical confidence regions and relies on decision thresholds. Here we focus on local identifiability, a critical issue in biological modeling. This is the case when a model has multiple parameter solutions which equivalently describe the input/output data, but predict different behaviours of the unmeasured variables, often those of major interest. We present theoretical background and applications to locally identifiable ODE models described by rational functions. We show how structural identifiability analysis completes the practical identifiability results. In particular we propose an algorithmic approach, implemented with our software DAISY, to calculate all numerical parameter solutions and to predict the corresponding behaviour of the unmeasured variables, which otherwise would remain hidden. A case study of a locally identifiable HIV model shows that one should be aware of the presence of multiple parameter solutions to comprehensively describe the biological system and avoid biological misinterpretation of the results.

摘要

生物系统动力学越来越多地使用非线性常微分方程进行研究,其参数是根据输入/输出实验数据估计的。结构可识别性分析解决了从无噪声数据中恢复未知参数的逆问题是否可唯一求解(全局),或者是否存在有限(局部)或无限(不可识别)数量的参数值产生相同的输入/输出轨迹的理论问题。相比之下,实际可识别性分析旨在评估实验数据是否在精度和准确性方面为参数估计提供信息。两种可识别性方法的主要区别在于,前者主要通过分析进行,并以增加计算复杂性为代价提供准确结果,而后者通常通过计算统计置信区域并依赖决策阈值进行数值测试。在这里,我们关注局部可识别性,这是生物建模中的一个关键问题。当模型具有多个等效描述输入/输出数据的参数解决方案,但预测不可测量变量的不同行为,通常是那些主要感兴趣的变量时,就会出现这种情况。我们介绍了局部可识别的 ODE 模型的理论背景和应用,这些模型由有理函数描述。我们展示了结构可识别性分析如何补充实际可识别性结果。特别是,我们提出了一种算法方法,该方法使用我们的软件 DAISY 实现,用于计算所有数值参数解决方案,并预测不可测量变量的相应行为,否则这些行为将保持隐藏。局部可识别 HIV 模型的案例研究表明,人们应该意识到存在多个参数解决方案,以便全面描述生物系统,并避免对结果的生物学误解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验