Suppr超能文献

电压门控钾通道 Kv4.3 与其辅助蛋白 KChIP1 相互作用的计算机研究

In silico investigation of the interaction between the voltage-gated potassium channel Kv4.3 and its auxiliary protein KChIP1.

机构信息

Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.

Università di Pisa, Dipartimento di Ingegneria Civile ed Industriale, Largo Lucio Lazzarino 2, I-56124 Pisa, Italy.

出版信息

Phys Chem Chem Phys. 2019 Dec 7;21(45):25290-25301. doi: 10.1039/c9cp04082j. Epub 2019 Nov 8.

Abstract

The voltage-gated potassium channel Kv4.3 plays a vital role in shaping the timing, frequency, and backpropagation of electrical signals in the brain and heart by generating fast transient currents at subthreshold membrane potentials in repetitive firing neurons. To achieve its physiological function, Kv4.3 is assisted by auxiliary β-subunits that become integral parts of the native A-type potassium channels, among which there are the Kv channel-interacting proteins (KChIPs). KChIPs are a family of cytosolic proteins that, when coexpressed with Kv4, lead to higher current density, modulation of channel inactivation and faster recovery from inactivation, while the loss of KChIP function may lead to severe pathological states. Recently, the structural basis of the KChIP1-Kv4.3 interaction was reported by using two similar X-ray crystallographic structures, which supported a crucial role for KChIP1 in enhancing the stability of the Kv4.3 tetrameric assembly, thus helping the trafficking of the channel to the plasma membrane. Here, we investigate through fully atomistic simulations the structure and stability of the human Kv4.3 tetramerization (T1) domain in complex with KChIP1 upon specific mutations located in the first and second interfaces of the complex, as compared to the wild-type (WT). Our results nicely complement the available structural and biophysical information collected so far on these complex variants. In particular, the degree of structural deviations and energetic instability, from small to substantial, observed in these variants with respect to the WT model seems to parallel well the level of channel dysfunction known from electrophysiology data. Our simulations provide an octameric structure of the WT KChIP1-Kv4.3 assembly very similar to the known crystal structures, and, at the same time, highlight the importance of a previously overlooked site of interaction between KChIP1 and the Kv4.3 T1 domain.

摘要

电压门控钾通道 Kv4.3 通过在重复放电神经元的亚阈值膜电位下产生快速瞬态电流,在大脑和心脏中对电信号的时间、频率和反向传播起着至关重要的作用。为了实现其生理功能,Kv4.3 需要辅助β亚基的协助,这些辅助β亚基成为天然 A 型钾通道的组成部分,其中包括钾通道相互作用蛋白(KChIPs)。KChIPs 是一组胞质蛋白,当与 Kv4 共同表达时,会导致电流密度增加、通道失活的调节以及失活后的更快恢复,而 KChIP 功能的丧失可能导致严重的病理状态。最近,使用两个类似的 X 射线晶体结构报道了 KChIP1-Kv4.3 相互作用的结构基础,这支持了 KChIP1 在增强 Kv4.3 四聚体组装稳定性方面的关键作用,从而有助于通道向质膜的运输。在这里,我们通过全原子模拟研究了与人 Kv4.3 四聚化(T1)结构域在特定突变(位于复合物的第一和第二界面)与野生型(WT)相比,与 KChIP1 复合时的结构和稳定性。我们的结果很好地补充了迄今为止关于这些复杂变体的可用结构和生物物理信息。特别是,在这些变体中,与 WT 模型相比,观察到的结构偏差和能量不稳定性的程度,从小到显著,似乎与电生理学数据中已知的通道功能障碍水平很好地平行。我们的模拟提供了与已知晶体结构非常相似的 WT KChIP1-Kv4.3 组装的八聚体结构,同时强调了 KChIP1 和 Kv4.3 T1 结构域之间以前被忽视的相互作用位点的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验