Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland.
Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, D-12489 Berlin, Germany.
Phys Rev Lett. 2019 Oct 25;123(17):172001. doi: 10.1103/PhysRevLett.123.172001.
An analytic expression is derived for the leading-order finite-volume effects arising in lattice QCD calculations of the hadronic-vacuum-polarization contribution to the muon's magnetic moment a_{μ}^{HVP,LO}≡(g-2){μ}^{HVP,LO}/2. For calculations in a finite spatial volume with periodicity L, a{μ}^{HVP,LO}(L) admits a transseries expansion with exponentially suppressed L scaling. Using a Hamiltonian approach, we show that the leading finite-volume correction scales as exp[-M_{π}L] with a prefactor given by the (infinite-volume) Compton amplitude of the pion, integrated with the muon-mass-dependent kernel. To give a complete quantitative expression, we decompose the Compton amplitude into the spacelike pion form factor F_{π}(Q^{2}) and a multiparticle piece. We determine the latter through next-to leading order in chiral perturbation theory and find that it contributes negligibly and through a universal term that depends only on the pion decay constant, with all additional low-energy constants dropping out of the integral.
导出了在格点 QCD 计算中,对μ子磁矩的Hadronic-Vacuum-Polarization(HVP)贡献的领头有限体效应的解析表达式,其中(a_{\mu}^{HVP,LO})≡((g-2){\mu}^{HVP,LO}/2)。对于具有周期性(L)的有限空间体积的计算,(a{\mu}^{HVP,LO}(L))允许具有指数衰减(L)标度的超越级数展开。使用哈密顿方法,我们表明领头有限体修正的标度为(exp[-M_{\pi}L]),其中一个因子由无限体积的π介子的康普顿振幅给出,与μ子质量相关的核进行积分。为了给出一个完整的定量表达式,我们将康普顿振幅分解为类时的π介子形状因子(F_{\pi}(Q^{2}))和多粒子部分。我们通过手征微扰理论的次领头阶确定后者,并发现它的贡献可以忽略不计,并且通过仅依赖于π介子衰变常数的普遍项,所有其他低能常数都从积分中消失。