Department of Physics, Department of Chemistry, and JILA, University of Colorado at Boulder, Colorado 80309, USA.
4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
Phys Rev Lett. 2019 Oct 11;123(15):153001. doi: 10.1103/PhysRevLett.123.153001.
Infrared (IR) spectroscopy of molecular vibrations provides insight into molecular structure, coupling, and dynamics. However, picosecond scale intermolecular and intramolecular many-body interactions, nonradiative relaxation, absorption, and thermalization typically dominate over IR spontaneous emission. We demonstrate how coupling to a resonant IR antenna can enhance spontaneous emission of molecular vibrations. Using time-domain nanoprobe spectroscopy we observe an up to 50% decrease in vibrational dephasing time T_{2,vib}, based on the coupling-induced population decay with T_{κ}≃550 fs and an associated Purcell factor of >10^{6}. This rate enhancement of the spontaneous emission of antenna-coupled molecular vibrations opens new avenues for IR coherent control, quantum information processing, and quantum chemistry.
分子振动的红外(IR)光谱学提供了对分子结构、耦合和动力学的深入了解。然而,皮秒级的分子间和分子内多体相互作用、非辐射弛豫、吸收和热化通常会主导 IR 自发发射。我们展示了如何通过与共振 IR 天线的耦合来增强分子振动的自发发射。通过时域纳米探针光谱学,我们观察到振动退相时间 T_{2,vib} 最多减少了 50%,这是基于 T_{κ}≃550 fs 时的耦合诱导的粒子数衰减和相关的 Purcell 因子 >10^{6}。这种对天线耦合分子振动的自发发射的速率增强为 IR 相干控制、量子信息处理和量子化学开辟了新途径。