Roelli Philippe, Pascual Robledo Isabel, Niehues Iris, Aizpurua Javier, Hillenbrand Rainer
CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain.
Materials Physics Center, CSIC-UPV/EHU, 20018, Donostia-San Sebastián, Spain.
Light Sci Appl. 2025 May 22;14(1):203. doi: 10.1038/s41377-025-01855-5.
Sum-frequency generation (SFG) is a second-order nonlinear process widely used for characterizing surfaces and interfaces with monolayer sensitivity. Recently, optical field enhancement in plasmonic nanocavities has enabled SFG with continuous wave (CW) lasers from nanoscale areas of molecules, promising applications like nanoscale SFG spectroscopy and coherent upconversion for mid-infrared detection at visible frequencies. Here, we demonstrate CW SFG from individual nanoparticle-on-mirror (NPoM) cavities, which are resonant at visible frequencies and filled with a monolayer of molecules, when placed beneath a metal scanning probe tip. The tip acts as an efficient broadband antenna, focusing incident CW infrared illumination onto the nanocavity. The cascaded near-field enhancement within the NPoM nanocavity yields nonlinear optical responses across a broad range of infrared frequencies, achieving SFG enhancements of up to 14 orders of magnitude. Further, nanomechanical positioning of the tip allows for in-operando control of SFG by tuning the local field enhancement rather than the illumination intensities. The versatility of tip-enhanced nanocavities allows for SFG studies of a wide range of molecular species in the few-molecule regime without the need for complex nanofabrication. Our results also promise SFG nanoimaging with tips providing strong visible and IR field enhancement at their apex, offering a robust platform for future applications in nonlinear nanooptics.
和频产生(SFG)是一种二阶非线性过程,被广泛用于以单层灵敏度表征表面和界面。最近,等离子体纳米腔中的光场增强使得能够利用连续波(CW)激光从分子的纳米级区域进行SFG,有望应用于纳米级SFG光谱学以及用于可见光频率下中红外检测的相干上转换。在此,我们展示了来自单个镜上纳米颗粒(NPoM)腔的连续波SFG,当置于金属扫描探针尖端下方时,这些腔在可见光频率下共振并填充有单层分子。该尖端充当高效的宽带天线,将入射的连续波红外照明聚焦到纳米腔上。NPoM纳米腔内的级联近场增强在很宽的红外频率范围内产生非线性光学响应,实现高达14个数量级的SFG增强。此外,尖端的纳米机械定位允许通过调节局部场增强而非照明强度来对SFG进行操作过程中的控制。尖端增强纳米腔的多功能性允许在少分子体系中对广泛的分子种类进行SFG研究,而无需复杂的纳米制造。我们的结果还预示着利用在其顶端提供强可见光和红外场增强的尖端进行SFG纳米成像,为非线性纳米光学的未来应用提供了一个强大的平台。