Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany.
Protein Sci. 2020 Feb;29(2):542-554. doi: 10.1002/pro.3780. Epub 2019 Nov 21.
An engineered variant of T4 lysozyme serves as a model for studying induced remote conformational changes in a full protein context. The design involves a duplicated surface helix, flanked by two loops, that switches between two different conformations spanning about 20 Å. Molecular dynamics simulations of the engineered protein, up to 1 μs, rule out α-helix to β-sheet transitions within the duplicated helix as suggested by others. These simulations highlight how the use of different force fields can lead to radical differences in the structure of the protein. In addition, Markov state modeling and transition path theory were employed to map a 6.6 μs simulation for possible early intermediate states and to provide insights into the onset of the switching motion. The putative intermediates involve the folding of one helical turn in the C-terminal loop through energy driven, sequential rearrangement of nearby salt bridges around the key residue Arg63. These results provide a first step towards understanding the energetics and dynamics of a rather complicated intra-protein motion.
一种经过工程改造的 T4 溶菌酶变体可用作研究完整蛋白质环境中诱导的远程构象变化的模型。该设计涉及一个由两个环包围的重复表面螺旋,该螺旋在跨越约 20Å 的两个不同构象之间切换。对工程化蛋白质进行的长达 1μs 的分子动力学模拟排除了其他人提出的重复螺旋内的α-螺旋到β-折叠转变。这些模拟突出了使用不同力场如何导致蛋白质结构的根本差异。此外,马尔可夫状态建模和转移路径理论被用于映射长达 6.6μs 的模拟,以寻找可能的早期中间状态,并深入了解开关运动的开始。假定的中间体涉及 C 末端环中一个螺旋圈的折叠,这是通过关键残基 Arg63 周围的邻近盐桥的能量驱动、顺序重排来实现的。这些结果为理解相当复杂的蛋白质内运动的能量学和动力学提供了第一步。