Suppr超能文献

基于模型的生物催化过程分析和带有集成光学传感器的微生物反应器的性能。

Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors.

机构信息

Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark.

Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark.

出版信息

N Biotechnol. 2020 May 25;56:27-37. doi: 10.1016/j.nbt.2019.11.001. Epub 2019 Nov 5.

Abstract

Design and development of scale-down approaches, such as microbioreactor (μBR) technologies with integrated sensors, are an adequate solution for rapid, high-throughput and cost-effective screening of valuable reactions and/or production strains, with considerably reduced use of reagents and generation of waste. A significant challenge in the successful and widespread application of μBRs in biotechnology remains the lack of appropriate software and automated data interpretation of μBR experiments. Here, it is demonstrated how mathematical models can be usedas helpful tools, not only to exploit the capabilities of microfluidic platforms, but also to reveal the critical experimental conditions when monitoring cascade enzymatic reactions. A simplified mechanistic model was developed to describe the enzymatic reaction of glucose oxidase and glucose in the presence of catalase inside a commercial microfluidic platform with integrated oxygen sensor spots. The proposed model allowed an easy and rapid identification of the reaction mechanism, kinetics and limiting factors. The effect of fluid flow and enzyme adsorption inside the microfluidic chip on the optical sensor response and overall monitoring capabilities of the presented platform was evaluated via computational fluid dynamics (CFD) simulations. Remarkably, the model predictions were independently confirmed for μL- and mL- scale experiments. It is expected that the mechanistic models will significantly contribute to the further promotion of μBRs in biocatalysis research and that the overall study will create a framework for screening and evaluation of critical system parameters, including sensor response, operating conditions, experimental and microbioreactor designs.

摘要

设计和开发缩微方法,如带有集成传感器的微生物反应器 (μBR) 技术,是快速、高通量和具有成本效益的有价值反应和/或生产菌株筛选的合适解决方案,试剂用量和废物生成量大大减少。在生物技术中成功和广泛应用 μBR 仍然面临的一个重大挑战是缺乏适当的软件和 μBR 实验的自动数据解释。本文展示了如何将数学模型用作有用的工具,不仅可以利用微流控平台的功能,还可以揭示监测级联酶反应时的关键实验条件。开发了一个简化的机理模型来描述葡萄糖氧化酶和葡萄糖在商业微流控平台中存在过氧化氢酶时的酶反应,该平台具有集成的氧传感器点。所提出的模型允许轻松快速地识别反应机制、动力学和限制因素。通过计算流体动力学 (CFD) 模拟评估了流体流动和酶在微流控芯片内的吸附对光学传感器响应和所提出平台的整体监测能力的影响。值得注意的是,模型预测独立地通过 μL 和 mL 规模实验得到了证实。预计机理模型将极大地促进 μBR 在生物催化研究中的进一步推广,并且整体研究将为筛选和评估关键系统参数(包括传感器响应、操作条件、实验和微生物反应器设计)创建一个框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验