School of Computer Science and Technology, Xidian University, Xi'an, 710071, China.
Sci Rep. 2019 Nov 8;9(1):16294. doi: 10.1038/s41598-019-52580-0.
Most of the recent successful object detection methods have been based on convolutional neural networks (CNNs). From previous studies, we learned that many feature reuse methods improve the network performance, but they increase the number of parameters. DenseNet uses thin layers that have fewer channels to alleviate the increase in parameters. This motivated us to find other methods for solving the increase in model size problems introduced by feature reuse methods. In this work, we employ different feature reuse methods on fire units and mobile units. We solved the problem and constructed two novel neural networks, fire-FRD-CNN and mobile-FRD-CNN. We conducted experiments with the proposed neural networks on KITTI and PASCAL VOC datasets.
最近大多数成功的目标检测方法都是基于卷积神经网络(CNN)的。从之前的研究中,我们了解到许多特征重用方法可以提高网络性能,但会增加参数数量。DenseNet 使用具有较少通道的薄层来减轻参数增加的问题。这促使我们寻找其他方法来解决特征重用方法引入的模型尺寸增大问题。在这项工作中,我们在火单元和移动单元上使用了不同的特征重用方法。我们解决了这个问题,并构建了两个新的神经网络,即 fire-FRD-CNN 和 mobile-FRD-CNN。我们在 KITTI 和 PASCAL VOC 数据集上对所提出的神经网络进行了实验。