文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

S-CNN: Subcategory-Aware Convolutional Networks for Object Detection.

作者信息

Chen Tao, Lu Shijian, Fan Jiayuan

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 Oct;40(10):2522-2528. doi: 10.1109/TPAMI.2017.2756936. Epub 2017 Sep 26.


DOI:10.1109/TPAMI.2017.2756936
PMID:28961103
Abstract

The marriage between the deep convolutional neural network (CNN) and region proposals has made breakthroughs for object detection in recent years. While the discriminative object features are learned via a deep CNN for classification, the large intra-class variation and deformation still limit the performance of the CNN based object detection. We propose a subcategory-aware CNN (S-CNN) to solve the object intra-class variation problem. In the proposed technique, the training samples are first grouped into multiple subcategories automatically through a novel instance sharing maximum margin clustering process. A multi-component Aggregated Channel Feature (ACF) detector is then trained to produce more latent training samples, where each ACF component corresponds to one clustered subcategory. The produced latent samples together with their subcategory labels are further fed into a CNN classifier to filter out false proposals for object detection. An iterative learning algorithm is designed for the joint optimization of image subcategorization, multi-component ACF detector, and subcategory-aware CNN classifier. Experiments on INRIA Person dataset, Pascal VOC 2007 dataset and MS COCO dataset show that the proposed technique clearly outperforms the state-of-the-art methods for generic object detection.

摘要

相似文献

[1]
S-CNN: Subcategory-Aware Convolutional Networks for Object Detection.

IEEE Trans Pattern Anal Mach Intell. 2018-10

[2]
Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection.

IEEE Trans Image Process. 2019-1

[3]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[4]
HCP: A Flexible CNN Framework for Multi-label Image Classification.

IEEE Trans Pattern Anal Mach Intell. 2016-9-1

[5]
PCL: Proposal Cluster Learning for Weakly Supervised Object Detection.

IEEE Trans Pattern Anal Mach Intell. 2020-1

[6]
Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.

Med Image Anal. 2017-8-24

[7]
Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection.

IEEE Trans Image Process.

[8]
Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection.

IEEE Trans Pattern Anal Mach Intell. 2021-6

[9]
Object Detection Networks on Convolutional Feature Maps.

IEEE Trans Pattern Anal Mach Intell. 2016-8-17

[10]
Combining Faster R-CNN and Model-Driven Clustering for Elongated Object Detection.

IEEE Trans Image Process. 2019-10-22

引用本文的文献

[1]
Application of Artificial Intelligence in Anatomical Structure Recognition of Standard Section of Fetal Heart.

Comput Math Methods Med. 2023

[2]
Categorization of Images Using Autoencoder Hashing and Training of Intra Bin Classifiers for Image Classification and Annotation.

J Med Syst. 2018-6-11

[3]
Deep Learning for Computer Vision: A Brief Review.

Comput Intell Neurosci. 2018-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索