Chen Tao, Lu Shijian, Fan Jiayuan
IEEE Trans Pattern Anal Mach Intell. 2018 Oct;40(10):2522-2528. doi: 10.1109/TPAMI.2017.2756936. Epub 2017 Sep 26.
The marriage between the deep convolutional neural network (CNN) and region proposals has made breakthroughs for object detection in recent years. While the discriminative object features are learned via a deep CNN for classification, the large intra-class variation and deformation still limit the performance of the CNN based object detection. We propose a subcategory-aware CNN (S-CNN) to solve the object intra-class variation problem. In the proposed technique, the training samples are first grouped into multiple subcategories automatically through a novel instance sharing maximum margin clustering process. A multi-component Aggregated Channel Feature (ACF) detector is then trained to produce more latent training samples, where each ACF component corresponds to one clustered subcategory. The produced latent samples together with their subcategory labels are further fed into a CNN classifier to filter out false proposals for object detection. An iterative learning algorithm is designed for the joint optimization of image subcategorization, multi-component ACF detector, and subcategory-aware CNN classifier. Experiments on INRIA Person dataset, Pascal VOC 2007 dataset and MS COCO dataset show that the proposed technique clearly outperforms the state-of-the-art methods for generic object detection.
近年来,深度卷积神经网络(CNN)与区域建议的结合在目标检测方面取得了突破。虽然通过深度CNN学习判别性目标特征用于分类,但类内的较大变化和变形仍然限制了基于CNN的目标检测性能。我们提出了一种子类别感知CNN(S-CNN)来解决目标类内变化问题。在所提出的技术中,首先通过一种新颖的实例共享最大间隔聚类过程将训练样本自动分组为多个子类别。然后训练一个多组件聚合通道特征(ACF)检测器以产生更多潜在训练样本,其中每个ACF组件对应一个聚类的子类别。所产生的潜在样本及其子类别标签进一步输入到CNN分类器中,以过滤掉用于目标检测的错误建议。设计了一种迭代学习算法用于图像子分类、多组件ACF检测器和子类别感知CNN分类器的联合优化。在INRIA Person数据集、Pascal VOC 2007数据集和MS COCO数据集上的实验表明,所提出的技术在通用目标检测方面明显优于当前的先进方法。