Institute Lorentz of Theoretical Physics, University of Leiden, 2333CA Leiden, The Netherlands.
Department of Theoretical Physics, University of the Basque Country UPV-EHU, 48040 Bilbao, Spain.
Philos Trans A Math Phys Eng Sci. 2019 Dec 30;377(2161):20190004. doi: 10.1098/rsta.2019.0004. Epub 2019 Nov 11.
Semilocal strings-a particular limit of electroweak strings-are an interesting example of a stable non-topological defect whose properties resemble those of their topological cousins, the Abrikosov-Nielsen-Olesen vortices. There is, however, one important difference: a network of semilocal strings will contain segments. These are 'dumbbells' whose ends behave almost like global monopoles that are strongly attracted to one another. While closed loops of string will eventually shrink and disappear, the segments can either shrink or grow, and a cosmological network of semilocal strings will reach a scaling regime. We discuss attempts to find a 'thermodynamic' description of the cosmological evolution and scaling of a network of semilocal strings, by analogy with well-known descriptions for cosmic strings and for monopoles. We propose a model for the time evolution of an overall length scale and typical velocity for the network as well as for its segments, and some supporting (preliminary) numerical evidence. This article is part of a discussion meeting issue 'Topological avatars of new physics'.
半局部弦——弱电弦的一个特殊极限——是一种稳定的非拓扑缺陷的有趣例子,其性质类似于它们的拓扑近亲,即 Abrikosov-Nielsen-Olesen 涡旋。然而,有一个重要的区别:半局部弦的网络将包含段。这些是“哑铃”,其两端的行为几乎就像强烈相互吸引的整体磁单极子。虽然弦的闭合环最终会收缩和消失,但段可以收缩或增长,而半局部弦的宇宙网络将达到一个缩放状态。我们通过类比宇宙弦和磁单极子的著名描述,尝试为宇宙中半局部弦网络的演化和缩放找到一种“热力学”描述。我们提出了一个用于网络整体长度尺度和典型速度以及其段的时间演化的模型,并提供了一些支持(初步)的数值证据。本文是讨论会议议题“新物理的拓扑化身”的一部分。