Suppr超能文献

机器学习技术在探测新物理拓扑赝像中的应用。

Machine learning techniques for detecting topological avatars of new physics.

机构信息

Particle Physics Research Center, Queen Mary University of London, London, E1 4NS UK.

Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Dec 30;377(2161):20190392. doi: 10.1098/rsta.2019.0392. Epub 2019 Nov 11.

Abstract

The search for highly ionizing particles in nuclear track detectors (NTDs) traditionally requires experts to manually search through samples in order to identify regions of interest that could be a hint of physics beyond the standard model of particle physics. The advent of automated image acquisition and modern data science, including machine learning-based processing of data presents an opportunity to accelerate the process of searching for anomalies in NTDs that could be a hint of a new physics avatar. The potential for modern data science applied to this topic in the context of the MoEDAL experiment at the large Hadron collider at the European Centre for Nuclear Research, CERN, is discussed. This article is part of a discussion meeting issue 'Topological avatars of new physics'.

摘要

在核径迹探测器(NTD)中寻找高离化粒子,传统上需要专家手动搜索样本,以识别可能暗示超出粒子物理学标准模型的物理现象的感兴趣区域。自动化图像采集和现代数据科学的出现,包括基于机器学习的数据处理,为加速搜索 NTD 中的异常现象提供了机会,这些异常现象可能是新物理形态的暗示。本文讨论了现代数据科学在欧洲核子研究中心大型强子对撞机上的 MoEDAL 实验中的应用潜力。本文是关于“新物理的拓扑形态”的讨论会议文章的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验