Suppr超能文献

用于对具有不断增加的侵袭和转移潜能的系列肝癌细胞系进行定量磷酸化蛋白质组学分析的数据集。

Dataset for quantitative phospho-proteomics analysis of a serial hepatoma cell lines with increasing invasion and metastasis potential.

作者信息

Xing Xiaohua, Yuan Hui, Sun Ying, Ke Kun, Dong Xiuqing, Chen Hui, Liu Xiaolong, Zhao Bixing, Huang Aimin

机构信息

The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.

The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350004, People's Republic of China.

出版信息

Data Brief. 2019 Oct 14;27:104634. doi: 10.1016/j.dib.2019.104634. eCollection 2019 Dec.

Abstract

Hepatoma is one of the most common malignant tumor, and most patients have very poor prognosis. Early prediction and intervention of the hepatoma recurrence/metastasis are the most effective way to improve the patients' clinical outcomes. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) based quantitative phospho-proteomics approach to identify biomarkers associated with hepatoma recurrence/metastasis in hepatoma cell lines with increasing metastasis ability. In total, 75 phosphorylated peptides corresponding to 60 phosphoproteins were significantly dysregulated. Bioinformatics analysis (GO, KEGG and IPA) allowed these data to be organized into distinct categories. These data represent the first in-depth proteomics analysis of a serial hepatoma cell lines with increasing invasion and metastasis potential. The data are related to (Xing et al., 2019).

摘要

肝癌是最常见的恶性肿瘤之一,大多数患者预后很差。肝癌复发/转移的早期预测和干预是改善患者临床结局的最有效方法。在此,我们使用基于等压标签相对和绝对定量(iTRAQ)的定量磷酸化蛋白质组学方法,在转移能力不断增强的肝癌细胞系中鉴定与肝癌复发/转移相关的生物标志物。总共,对应于60种磷酸化蛋白质的75个磷酸化肽段存在显著失调。生物信息学分析(GO、KEGG和IPA)使这些数据能够被组织成不同的类别。这些数据代表了对一系列侵袭和转移潜能不断增强的肝癌细胞系的首次深入蛋白质组学分析。这些数据与(邢等人,2019年)相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60f/6833346/0db587c61f61/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验