Power Michael J, Rogerson Luke E, Schubert Timm, Berens Philipp, Euler Thomas, Paquet-Durand François
Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany.
J Comp Neurol. 2020 May;528(7):1113-1139. doi: 10.1002/cne.24807. Epub 2019 Nov 26.
Calcium (Ca ) dysregulation has been linked to neuronal cell death, including in hereditary retinal degeneration. Ca dysregulation is thought to cause rod and cone photoreceptor cell death. Spatial and temporal heterogeneities in retinal disease models have hampered validation of this hypothesis. We examined the role of Ca in photoreceptor degeneration, assessing the activation pattern of Ca -dependent calpain proteases, generating spatiotemporal maps of the entire retina in the cpfl1 mouse model for primary cone degeneration, and in the rd1 and rd10 models for primary rod degeneration. We used Gaussian process models to distinguish the temporal sequences of degenerative molecular processes from other variability sources.In the rd1 and rd10 models, spatiotemporal pattern of increased calpain activity matched the progression of primary rod degeneration. High calpain activity coincided with activation of the calpain-2 isoform but not with calpain-1, suggesting differential roles for both calpain isoforms. Primary rod loss was linked to upregulation of apoptosis-inducing factor, although only a minute fraction of cells showed activity of the apoptotic marker caspase-3. After primary rod degeneration concluded, caspase-3 activation appeared in cones, suggesting apoptosis as the dominant mechanism for secondary cone loss. Gaussian process models highlighted calpain activity as a key event during primary rod photoreceptor cell death. Our data suggest a causal link between Ca dysregulation and primary, nonapoptotic degeneration of photoreceptors and a role for apoptosis in secondary degeneration of cones, highlighting the importance of the spatial and temporal location of key molecular events, which may guide the evaluation of new therapies.
钙(Ca²⁺)调节异常与神经元细胞死亡有关,包括遗传性视网膜变性。钙调节异常被认为会导致视杆和视锥光感受器细胞死亡。视网膜疾病模型中的空间和时间异质性阻碍了这一假设的验证。我们研究了钙在光感受器退化中的作用,评估了钙依赖性钙蛋白酶的激活模式,在原发性视锥退化的cpfl1小鼠模型以及原发性视杆退化的rd1和rd10模型中生成了整个视网膜的时空图谱。我们使用高斯过程模型来区分退行性分子过程的时间序列与其他变异性来源。
在rd1和rd10模型中,钙蛋白酶活性增加的时空模式与原发性视杆退化的进程相匹配。高钙蛋白酶活性与钙蛋白酶-2亚型的激活同时发生,但与钙蛋白酶-1无关,这表明两种钙蛋白酶亚型具有不同的作用。原发性视杆细胞丢失与凋亡诱导因子的上调有关,尽管只有一小部分细胞显示出凋亡标志物半胱天冬酶-3的活性。原发性视杆退化结束后,半胱天冬酶-3激活出现在视锥细胞中,表明凋亡是继发性视锥细胞丢失的主要机制。高斯过程模型强调钙蛋白酶活性是原发性视杆光感受器细胞死亡期间的关键事件。我们的数据表明钙调节异常与光感受器的原发性、非凋亡性退化之间存在因果关系,以及凋亡在视锥细胞继发性退化中的作用,突出了关键分子事件的时空位置的重要性,这可能指导新疗法的评估。