Suppr超能文献

用于高功率或峰值强度激光应用的向列型液晶抗损伤参数研究。

Investigation of parameters governing damage resistance of nematic liquid crystals for high-power or peak-intensity laser applications.

作者信息

Kosc T Z, Kozlov A A, Papernov S, Kafka K R P, Marshall K L, Demos S G

机构信息

Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY, 14623-1299, USA.

出版信息

Sci Rep. 2019 Nov 11;9(1):16435. doi: 10.1038/s41598-019-52305-3.

Abstract

We investigate the damage resistance of saturated and unsaturated liquid crystals (LC's) under a wide range of laser excitation conditions, including 1053-nm pulse durations between 600 fs and 1.5 ns and nanosecond pulse excitation at 351 nm and 532 nm. This study explores the relationship between the LC's resistance to laser-induced breakdown (damage) and the electronic structure (π-electron delocalization) of the constituent molecules. The laser-induced damage threshold at all wavelengths and pulse durations was consistently higher in saturated materials than in their unsaturated counterparts. The wavelength's dependence in the results suggests that the energy coupling process that leads to laser-induced breakdown is governed by the energy separation between the ground state and the first and second excited states, while the pulse duration's dependence in the results reveals the important role of electron relaxation between the excited states. A qualitative description was developed to interpret the experimental observations.

摘要

我们研究了饱和与不饱和液晶在广泛的激光激发条件下的抗损伤能力,这些条件包括1053纳米波长、脉冲持续时间在600飞秒至1.5纳秒之间,以及351纳米和532纳米波长的纳秒脉冲激发。本研究探讨了液晶对激光诱导击穿(损伤)的抗性与构成分子的电子结构(π电子离域)之间的关系。在所有波长和脉冲持续时间下,饱和材料的激光诱导损伤阈值始终高于其不饱和对应物。结果中波长的依赖性表明,导致激光诱导击穿的能量耦合过程受基态与第一和第二激发态之间的能量分离控制,而结果中脉冲持续时间的依赖性揭示了激发态之间电子弛豫的重要作用。我们开发了一种定性描述来解释实验观察结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c02/6848071/6d902c0a22e9/41598_2019_52305_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验