Suppr超能文献

体积适应控制干细胞的机械转导。

Volume Adaptation Controls Stem Cell Mechanotransduction.

机构信息

School of Human Sciences , University of Western Australia , Perth , Western Australia 6009 , Australia.

Department of Cellular Biophysics , Max Planck Institute for Medical Research , 69120 Heidelberg , Germany.

出版信息

ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45520-45530. doi: 10.1021/acsami.9b19770. Epub 2019 Dec 2.

Abstract

Recent studies have found discordant mechanosensitive outcomes when comparing 2D and 3D, highlighting the need for tools to study mechanotransduction in 3D across a wide spectrum of stiffness. A gelatin methacryloyl (GelMA) hydrogel with a continuous stiffness gradient ranging from 5 to 38 kPa was developed to recapitulate physiological stiffness conditions. Adipose-derived stem cells (ASCs) were encapsulated in this hydrogel, and their morphological characteristics and expression of both mechanosensitive proteins (Lamin A, YAP, and MRTFa) and differentiation markers (PPARγ and RUNX2) were analyzed. Low-stiffness regions (∼8 kPa) permitted increased cellular and nuclear volume and enhanced mechanosensitive protein localization in the nucleus. This trend was reversed in high stiffness regions (∼30 kPa), where decreased cellular and nuclear volumes and reduced mechanosensitive protein nuclear localization were observed. Interestingly, cells in soft regions exhibited enhanced osteogenic RUNX2 expression, while those in stiff regions upregulated the adipogenic regulator PPARγ, suggesting that volume, not substrate stiffness, is sufficient to drive 3D stem cell differentiation. Inhibition of myosin II (Blebbistatin) and ROCK (Y-27632), both key drivers of actomyosin contractility, resulted in reduced cell volume, especially in low-stiffness regions, causing a decorrelation between volume expansion and mechanosensitive protein localization. Constitutively active and inactive forms of the canonical downstream mechanotransduction effector TAZ were stably transfected into ASCs. Activated TAZ resulted in higher cellular volume despite increasing stiffness and a consistent, stiffness-independent translocation of YAP and MRTFa into the nucleus. Thus, volume adaptation as a function of 3D matrix stiffness can control stem cell mechanotransduction and differentiation.

摘要

最近的研究发现,在比较 2D 和 3D 时,力学敏感性结果存在差异,这凸显了需要工具来研究 3D 中广泛硬度范围内的力学转导。开发了一种从 5 到 38 kPa 连续硬度梯度的明胶甲基丙烯酰(GelMA)水凝胶,以再现生理硬度条件。将脂肪来源的干细胞(ASCs)封装在该水凝胶中,并分析其形态特征以及力学敏感性蛋白(Lamin A、YAP 和 MRTFa)和分化标志物(PPARγ 和 RUNX2)的表达。低硬度区域(约 8 kPa)允许细胞和核体积增加,并增强了核内力学敏感性蛋白的定位。在高硬度区域(约 30 kPa)中,观察到细胞和核体积减小,以及力学敏感性蛋白核内定位减少,这种趋势发生了逆转。有趣的是,软区的细胞表现出增强的成骨 RUNX2 表达,而硬区的细胞则上调了脂肪生成调节剂 PPARγ,这表明体积而不是基质硬度足以驱动 3D 干细胞分化。肌球蛋白 II(Blebbistatin)和 ROCK(Y-27632)的抑制,这两种肌动球蛋白收缩的关键驱动因素,导致细胞体积减少,特别是在低硬度区域,导致体积扩张和力学敏感性蛋白定位之间的相关性降低。组成型激活和失活形式的经典下游力学转导效应物 TAZ 被稳定转染到 ASCs 中。尽管增加了刚度,但激活的 TAZ 导致细胞体积增加,并导致 YAP 和 MRTFa 一致且不依赖于刚度的核内易位。因此,作为 3D 基质刚度函数的体积适应可以控制干细胞的力学转导和分化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验