Liu Bingqiu, Zhang Qi, Li Lu, Jin Zhanshuang, Wang Chungang, Zhang Lingyu, Su Zhong-Min
Department of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun, Jilin , 130024 , People's Republic of China.
School of Chemistry and Environmental Engineering , Changchun University of Science and Technology , Changchun , 130022 , People's Republic of China.
ACS Nano. 2019 Nov 26;13(11):13513-13523. doi: 10.1021/acsnano.9b07428. Epub 2019 Nov 15.
Red phosphorus (P) has been recognized as a promising material for lithium/sodium-ion batteries (LIBs/SIBs) because of their high theoretical capacity. However, tremendous volume variation and low conductivity limit its widespread applications. Hence, we design and synthesize uniformly distributed honeycomb-like hierarchical micro-mesoporous carbon nanospheres (HHPCNSs) with ultralarge pore volume (3.258 cm g) on a large scale through a facile way. The large pore volume provides enough space for loading of P and the expansion of P, and the uniform distribution of the micro-mesopores enables the red P to load uniformly. The resulting HHPCNSs/P composite exhibits extremely high capacity (2463.8 and 2367.6 mA h g at 0.1 A g for LIBs and SIBs, respectively), splendid rate performance (842.2 and 831.1 mA h g at 10 A g for LIBs and SIBs, respectively) and superior cycling stability (1201.6 and 938.4 mA h g at 2 and 5 A g after 1000 cycles for LIBs and 1269.4 and 861.8 mA h g at 2 and 5 A g after 1000 cycles for SIBs, respectively). More importantly, when coupled with LiFePO and NaV(PO) cathode, lithium/sodium-ion full batteries display high capacity and superior rate and cycling performances, revealing the practicability of the HHPCNSs/P composite. The exceptional electrochemical performance is caused by the honeycomb-like carbon network with ultralarge pore volume, uniformly distributed hierarchical micro-mesoporous nanostructure, outstanding electronic conductivity, and excellent nanostructural stability, which is much better than currently reported P/C materials for both LIBs and SIBs.
红磷(P)因其高理论容量而被认为是锂/钠离子电池(LIBs/SIBs)的一种有前景的材料。然而,巨大的体积变化和低电导率限制了其广泛应用。因此,我们通过一种简便的方法大规模设计并合成了具有超大孔体积(3.258 cm³/g)的均匀分布的蜂窝状分级微介孔碳纳米球(HHPCNSs)。大孔体积为P的负载和P的膨胀提供了足够的空间,微介孔的均匀分布使红磷能够均匀负载。所得的HHPCNSs/P复合材料表现出极高的容量(在0.1 A/g时,LIBs和SIBs分别为2463.8和2367.6 mA h/g)、出色的倍率性能(在10 A/g时,LIBs和SIBs分别为842.2和831.1 mA h/g)以及优异的循环稳定性(在1000次循环后,2 A/g和5 A/g时,LIBs分别为1201.6和938.4 mA h/g,SIBs分别为1269.4和861.8 mA h/g)。更重要的是,当与LiFePO₄和NaV₃(PO₄)₃ 阴极耦合时,锂/钠离子全电池显示出高容量以及优异的倍率和循环性能,揭示了HHPCNSs/P复合材料的实用性。这种优异的电化学性能是由具有超大孔体积的蜂窝状碳网络、均匀分布的分级微介孔纳米结构、出色的电子导电性和优异的纳米结构稳定性引起的,这比目前报道的用于LIBs和SIBs的P/C材料要好得多。