Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia; Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Université de Montréal, Saint-Hyacinthe, Canada.
Plasmid. 2020 Jan;107:102461. doi: 10.1016/j.plasmid.2019.102461. Epub 2019 Nov 9.
Many of the disease-causing toxins of the pathogenic bacterium Clostridium perfringens are harboured on large, highly stable, conjugative plasmids. Previous work has established the requirement of a ParMRC-like partitioning system for plasmid maintenance, but little is known about other mechanisms used to ensure stable plasmid inheritance. The archetypal 47 kb Tcp plasmid, pCW3, encodes a gene, resP, whose putative product has sequence similarity to members of the serine recombinase family of site-specific recombinases. ResP is therefore likely to function to resolve plasmid multimers. Sequence analysis identified that resP genes are present on all C. perfringens plasmid families, suggesting a conserved function in these plasmids. To assess the requirement of resP for the stability of pCW3, deletion mutants were constructed. Deletion of resP from pCW3 resulted in a marked instability phenotype that was rescued upon complementation with the wild-type resP gene. Complementation with resP genes from two different C. perfringens plasmids demonstrated that only closely related resP genes can complement the mutation on pCW3. The function of ResP in vivo was examined using an Escherichia coli model system, which determined that two directly repeated res sites were required for the resolution of DNA and that ResP could resolve multimeric plasmid forms into monomeric units. Based on these findings we concluded that ResP could catalyse the resolution of plasmid multimers and was required for the maintenance of Tcp plasmids within C. perfringens. Overall, the results of this study have significant implications for our understanding of the maintenance of toxin-encoding plasmids within C. perfringens.
许多致病的梭状芽胞杆菌(Clostridium perfringens)的毒素都存在于大型、高度稳定的可接合质粒上。先前的工作已经确定了 ParMRC 样分配系统对质粒维持的要求,但对于确保稳定的质粒遗传的其他机制知之甚少。典型的 47kb Tcp 质粒 pCW3 编码一个基因 resP,其假定产物与位点特异性重组酶家族的丝氨酸重组酶具有序列相似性。因此,ResP 很可能用于解决质粒多聚体。序列分析表明,resP 基因存在于所有梭状芽胞杆菌质粒家族中,这表明它们在这些质粒中具有保守功能。为了评估 resP 对 pCW3 稳定性的要求,构建了缺失突变体。从 pCW3 中缺失 resP 导致明显的不稳定性表型,而野生型 resP 基因的互补则可以挽救。用来自两种不同的梭状芽胞杆菌质粒的 resP 基因进行互补表明,只有密切相关的 resP 基因才能互补 pCW3 上的突变。使用大肠杆菌模型系统研究了 ResP 在体内的功能,该系统确定了两个直接重复的 res 位点是 DNA 解析所必需的,并且 ResP 可以将多聚体质粒形式解析为单体单位。基于这些发现,我们得出结论,ResP 可以催化质粒多聚体的解析,并且是梭状芽胞杆菌内 Tcp 质粒维持所必需的。总的来说,这项研究的结果对我们理解梭状芽胞杆菌内毒素编码质粒的维持具有重要意义。