Suppr超能文献

多阶段酶响应纳米颗粒-微凝胶肺给药系统的体外和体内特性研究。

In-vitro and in-vivo characterization of a multi-stage enzyme-responsive nanoparticle-in-microgel pulmonary drug delivery system.

机构信息

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.

The Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.

出版信息

J Control Release. 2019 Dec 28;316:393-403. doi: 10.1016/j.jconrel.2019.09.012. Epub 2019 Nov 9.

Abstract

Although the lung is an obvious target for site-specific delivery of many therapeutics for respiratory airway diseases such as asthma, COPD, and cystic fibrosis, novel strategies are needed to avoid key physiologic barriers for efficient delivery and controlled release of therapeutics to the lungs. Specifically, deposition into the deep lung requires particles with a 1-5μm aerodynamic diameter; however, particles with a geometric diameter less than 6μm are rapidly cleared by alveolar macrophages. Additionally, epithelial, endothelial, and fibroblast cells prefer smaller (< 300nm) nanoparticles for efficient endocytosis. Here we address these contradictory design requirements by using a nanoparticle-inside-microgel system (Nano-in-Microgel). Using an improved maleimide-thiol based Michael Addition during (water-in-oil) Emulsion (MADE) method, we fabricated both trypsin-responsive and neutrophil elastase-responsive polymeric Nano-in-Microgel to show the versatility of the system in easily exchanging enzyme-responsive crosslinkers for disease-specific proteases. By varying the initial macromer concentration, from 20 to 50% w/v, the size distribution means ranged from 4-8μm, enzymatic degradation of the microgels is within 30min, and in vitro macrophage phagocytosis is lower for the higher % w/v. We further demonstrated that in vivo lung delivery of the multi-stage carriers through the pulmonary route yields particle retention up to several hours and followed by clearance within in naïve mice. Our results provide a further understanding of how enzymatically-degradable multi-stage polymeric carriers can be used for pulmonary drug delivery.

摘要

虽然肺部是许多治疗呼吸系统疾病(如哮喘、COPD 和囊性纤维化)的药物的靶向部位,但需要新的策略来避免治疗药物向肺部有效传递和控制释放的关键生理屏障。具体而言,要将药物递送到肺部深处,需要具有 1-5μm 空气动力学直径的颗粒;然而,几何直径小于 6μm 的颗粒会被肺泡巨噬细胞迅速清除。此外,上皮细胞、内皮细胞和成纤维细胞更喜欢用于有效胞吞作用的小粒径(<300nm)纳米颗粒。在这里,我们通过使用纳米颗粒内微凝胶系统(Nano-in-Microgel)来解决这些相互矛盾的设计要求。使用改进的马来酰亚胺-巯基基于迈克尔加成的(water-in-oil)乳液(MADE)方法,我们制备了胰蛋白酶响应和中性粒细胞弹性蛋白酶响应的聚合物 Nano-in-Microgel,以展示该系统在轻松交换针对特定疾病的蛋白酶的酶响应交联剂方面的多功能性。通过改变初始大分子单体浓度(20-50%w/v),粒径分布平均值范围为 4-8μm,微凝胶的酶降解在 30min 内完成,较高的 w/v 会降低体外巨噬细胞吞噬作用。我们进一步证明,通过肺部途径将多阶段载体递送到体内肺部,可使颗粒保留长达数小时,然后在无经验的小鼠中清除。我们的结果进一步了解了如何使用酶可降解的多阶段聚合物载体进行肺部药物传递。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验