Suppr超能文献

p53 DNA 结合靶点的丰富世界:DNA 结构的作用。

The Rich World of p53 DNA Binding Targets: The Role of DNA Structure.

机构信息

Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.

出版信息

Int J Mol Sci. 2019 Nov 9;20(22):5605. doi: 10.3390/ijms20225605.

Abstract

The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5'RRRCWWGYYY3' sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.

摘要

p53 的抑瘤功能及其在调节细胞周期、细胞凋亡、衰老和代谢中的作用主要通过与 DNA 的相互作用来实现。p53 作为许多基因的转录因子发挥作用。大多数 p53 靶基因的启动子中含有所谓的 p53 反应元件,由 20 个碱基长的典型共识序列组成。与通常结合一个具体和明确的 DNA 靶标的其他转录因子相比,p53 共识序列并不严格,但包含两个 5'RRRCWWGYYY3'序列的重复;因此,它在靶基因之间差异显著。此外,p53 还结合至少部分且通常完全缺乏此共识序列的 DNA 片段。p53 还与多种非 B DNA 结构具有高亲和力,包括 Holliday 连接、十字形结构、四链 DNA、三链 DNA、DNA 环、膨出 DNA 和半夹合 DNA。在这篇综述中,我们总结了 p53 与各种 DNA 靶标的相互作用信息,并讨论了 p53 DNA 结合靶标丰富多样的世界对其复杂调节功能的功能后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4b/6888028/5e28dc3a0741/ijms-20-05605-g001.jpg

相似文献

1
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure.
Int J Mol Sci. 2019 Nov 9;20(22):5605. doi: 10.3390/ijms20225605.
2
Recognition of Local DNA Structures by p53 Protein.
Int J Mol Sci. 2017 Feb 10;18(2):375. doi: 10.3390/ijms18020375.
3
High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops.
Biochemistry. 2004 Jun 8;43(22):7215-25. doi: 10.1021/bi049928k.
5
Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure.
Biochem Biophys Res Commun. 2013 Nov 8;441(1):83-8. doi: 10.1016/j.bbrc.2013.10.015. Epub 2013 Oct 14.
6
p53 oligomerization and DNA looping are linked with transcriptional activation.
EMBO J. 1994 Dec 15;13(24):6011-20. doi: 10.1002/j.1460-2075.1994.tb06947.x.
7
The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets.
Biochem Biophys Res Commun. 2010 Jan 15;391(3):1409-14. doi: 10.1016/j.bbrc.2009.12.076. Epub 2009 Dec 22.
8
Diverse p53/DNA binding modes expand the repertoire of p53 response elements.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10624-10629. doi: 10.1073/pnas.1618005114. Epub 2017 Sep 14.
9
10
Tumor suppressor protein p53 binds preferentially to supercoiled DNA.
Oncogene. 1997 Oct;15(18):2201-9. doi: 10.1038/sj.onc.1201398.

引用本文的文献

1
Chromatin Immunoprecipitation Reveals p53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines.
ACS Bio Med Chem Au. 2025 Feb 12;5(2):283-298. doi: 10.1021/acsbiomedchemau.4c00124. eCollection 2025 Apr 16.
2
Harnessing p53 for targeted cancer therapy: new advances and future directions.
Transcription. 2025 Feb;16(1):3-46. doi: 10.1080/21541264.2025.2452711. Epub 2025 Mar 3.
3
Navigating the complexity of p53-DNA binding: implications for cancer therapy.
Biophys Rev. 2024 Jul 11;16(4):479-496. doi: 10.1007/s12551-024-01207-4. eCollection 2024 Aug.
5
A folding motif formed with an expanded genetic alphabet.
Nat Chem. 2024 Oct;16(10):1715-1722. doi: 10.1038/s41557-024-01552-7. Epub 2024 Jun 10.
6
Single molecule studies characterize the kinetic mechanism of tetrameric p53 binding to different native response elements.
PLoS One. 2023 Aug 15;18(8):e0286193. doi: 10.1371/journal.pone.0286193. eCollection 2023.
7
Targeting p53 pathways: mechanisms, structures, and advances in therapy.
Signal Transduct Target Ther. 2023 Mar 1;8(1):92. doi: 10.1038/s41392-023-01347-1.
8
Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: A review.
Int J Biol Macromol. 2022 Nov 30;221:1476-1490. doi: 10.1016/j.ijbiomac.2022.09.152. Epub 2022 Sep 18.
10
A Quality by Design Approach in Pharmaceutical Development of Non-Viral Vectors with a Focus on miRNA.
Pharmaceutics. 2022 Jul 16;14(7):1482. doi: 10.3390/pharmaceutics14071482.

本文引用的文献

1
DNA G-quadruplex stability, position and chromatin accessibility are associated with CpG island methylation.
FEBS J. 2020 Feb;287(3):483-495. doi: 10.1111/febs.15065. Epub 2019 Sep 26.
2
The role of RNA G-quadruplexes in human diseases and therapeutic strategies.
Wiley Interdiscip Rev RNA. 2020 Jan;11(1):e1568. doi: 10.1002/wrna.1568. Epub 2019 Sep 12.
3
6
The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria.
Molecules. 2019 May 2;24(9):1711. doi: 10.3390/molecules24091711.
7
Influence of p53 Isoform Expression on Survival in High-Grade Serous Ovarian Cancers.
Sci Rep. 2019 Mar 27;9(1):5244. doi: 10.1038/s41598-019-41706-z.
8
Understanding p53 functions through p53 antibodies.
J Mol Cell Biol. 2019 Apr 1;11(4):317-329. doi: 10.1093/jmcb/mjz010.
9
Recent Progress of Targeted G-Quadruplex-Preferred Ligands Toward Cancer Therapy.
Molecules. 2019 Jan 24;24(3):429. doi: 10.3390/molecules24030429.
10
Defining TP53 pioneering capabilities with competitive nucleosome binding assays.
Genome Res. 2019 Jan;29(1):107-115. doi: 10.1101/gr.234104.117. Epub 2018 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验