Suppr超能文献

硫代葡萄糖苷类似物的药物设计研究:药效团映射、分子对接和 QSAR 建模。

Drug-designing Studies on Sulforaphane Analogues: Pharmacophore Mapping, Molecular Docking and QSAR Modeling.

机构信息

Department of Agriculture, Payame Noor University, Tehran Shargh Branch, Tehran, Iran.

Department of Chemical engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

出版信息

Curr Drug Discov Technol. 2021;18(1):139-157. doi: 10.2174/1570163816666191112122047.

Abstract

AIMS

In the presented work we successfully discovered several novel NQO1 inducers using the computational approaches.

BACKGROUND

The phytochemical sulforaphane (SFN) is a potent inducer of carcinogen detoxication enzymes like NAD(P)H:quinone oxidoreductase 1 (NQO1) through the Kelch-like erythroid cellderived protein with CNC homology[ECH]-associated protein 1 (Keap1)-[NF-E2]-related factor 2 (Nrf2) signaling pathway.

OBJECTIVE

In this paper, we report the first QSAR and pharmacophore modeling study of sulforaphane analogues as NQO1 inducers. The pharmacophore model and understanding the relationships between the structures and activities of the known inducers will give useful information on the structural basis for NQO1 enzymatic activity and lead optimization for future rational design of new sulforaphane analogues as potent NQO1 inducers.

METHODS

In this study, a combination of QSAR modeling, pharmacophore generation, virtual screening and molecular docking was performed on a series of sulforaphane analogues as NQO1 inducers.

RESULTS

In deriving the QSAR model, the stepwise multiple linear regression established a reliable model with the training set (N: 43, R: 0.971, RMSE: 0.216) and test set (N: 14, R: 0.870, RMSE: 0.324, Q2: 0.80) molecules. The best ligand-based pharmacophore model comprised two hydrophobic (HY), one ring aromatic (RA) and three hydrogen bond acceptor (HBA) sites. The model was validated by a testing set and the decoys set, Güner-Henry (GH) scoring methods, etc. The enrichment of model was assessed by the sensitivity (0.92) and specificity (0.95). Moreover, the values of enrichment factor (EF) and the area under the receiver operating characteristics curve (AUC) were 12 and 0.94, respectively. This well-validated model was applied to screen two Asinex libraries for the novel NQO1 inducers. The hits were subsequently subjected to molecular docking after being filtering by Lipinski's, MDDR-like, and Veber rules as well as evaluating their interaction with three major drugmetabolizing P450 enzymes, CYP2C9, CYP2D6 and CYP3A4. Ultimately, 12 hits filtered by molecular docking were subjected to validated QSAR model for calculating their inducer potencies and were introduced as potential NQO1 inducers for further investing action.

CONCLUSION

Conclusively, the validated QSAR model was applied on the hits to calculate their inducer potencies and these 12 hits were introduced as potential NQO1 inducers for further investigations.

摘要

目的

在本研究中,我们成功地使用计算方法发现了几种新型 NQO1 诱导剂。

背景

植物化学物萝卜硫素(SFN)通过 Kelch 样红细胞衍生蛋白与 CNC 同源性[ECH]-相关蛋白 1(Keap1)-[NF-E2]-相关因子 2(Nrf2)信号通路,是一种有效的致癌物质解毒酶如 NAD(P)H:醌氧化还原酶 1(NQO1)诱导剂。

目的

本研究报告了萝卜硫素类似物作为 NQO1 诱导剂的首个定量构效关系(QSAR)和药效团建模研究。药效团模型和对已知诱导剂结构和活性之间关系的理解,将为 NQO1 酶活性的结构基础以及未来新萝卜硫素类似物作为有效的 NQO1 诱导剂的合理设计提供有用信息。

方法

在这项研究中,对一系列作为 NQO1 诱导剂的萝卜硫素类似物进行了 QSAR 建模、药效团生成、虚拟筛选和分子对接的组合研究。

结果

在得出 QSAR 模型时,逐步多元线性回归建立了一个可靠的模型,包括训练集(N:43,R:0.971,RMSE:0.216)和测试集(N:14,R:0.870,RMSE:0.324,Q2:0.80)分子。最佳基于配体的药效团模型由两个疏水性(HY)、一个环芳族(RA)和三个氢键接受体(HBA)组成。该模型通过测试集和 decoys 集、Güner-Henry(GH)评分等方法进行了验证。通过灵敏度(0.92)和特异性(0.95)评估了模型的富集程度。此外,模型的富集因子(EF)和接收者操作特征曲线下的面积(AUC)值分别为 12 和 0.94。该经过良好验证的模型用于筛选两个 Asinex 库中的新型 NQO1 诱导剂。对符合条件的化合物进行 Lipinski 规则、MDDR 类似物规则和 Veber 规则过滤,并评估它们与三种主要药物代谢 P450 酶 CYP2C9、CYP2D6 和 CYP3A4 的相互作用后,进行分子对接。最终,通过分子对接筛选出的 12 个符合条件的化合物经过验证的 QSAR 模型计算其诱导剂效力,并被引入为潜在的 NQO1 诱导剂进行进一步研究。

结论

总之,经过验证的 QSAR 模型被应用于命中化合物以计算其诱导剂效力,这 12 个命中化合物被引入为潜在的 NQO1 诱导剂进行进一步研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验