School of Chemistry, University of Bristol, Cantocks Close, Bristol, BS8 1TS, UK.
AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.
Nat Commun. 2019 Nov 13;10(1):5152. doi: 10.1038/s41467-019-13154-w.
The photochemical decarboxylation of carboxylic acids is a versatile route to free radical intermediates for chemical synthesis. However, the sequential nature of this multi-step reaction renders the mechanism challenging to probe. Here, we employ a 100 kHz mid-infrared probe in a transient absorption spectroscopy experiment to track the decarboxylation of cyclohexanecarboxylic acid in acetonitrile-d over picosecond to millisecond timescales using a photooxidant pair (phenanthrene and 1,4-dicyanobenzene). Selective excitation of phenanthrene at 256 nm enables a diffusion-limited photoinduced electron transfer to 1,4-dicyanobenzene. A measured time offset in the rise of the CO byproduct reports on the lifetime (520 ± 120 ns) of a reactive carboxyl radical in solution, and spectroscopic observation of the carboxyl radical confirm its formation as a reaction intermediate. Precise clocking of the lifetimes of radicals generated in situ by an activated C-C bond fission will pave the way for improving the photocatalytic selectivity and turnover.
羧酸的光化学脱羧是一种将羧酸转化为自由基中间体的多用途方法,用于化学合成。然而,由于该多步反应的顺序性质,使得该机制难以探测。在这里,我们在瞬态吸收光谱实验中使用 100 kHz 的中红外探头,在皮秒到毫秒的时间尺度内跟踪环己烷羧酸在乙腈-d 中的脱羧反应,使用光氧化剂对(菲和 1,4-二氰基苯)。在 256nm 处选择性激发菲,可实现扩散限制的光诱导电子转移到 1,4-二氰基苯。通过测量 CO 副产物上升的时间偏移,可以报告溶液中反应性羧基自由基的寿命(520±120ns),并且对羧基自由基的光谱观察证实了其作为反应中间体的形成。通过活化的 C-C 键断裂原位生成的自由基的精确计时,将为提高光催化选择性和周转率铺平道路。