Fehr Duc, Schmidtlein C Ross, Hwang Sinchun, Deasy Joseph O, Veeraraghavan Harini
Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:168-171. doi: 10.1109/ISBI.2016.7493236. Epub 2016 Jun 16.
Early detection and the assessment of changes in bone metastatic cancers can enable clinicians to monitor disease progression and modify treatment to help achieve improved results for patients. However, poor contrast makes detection difficult, and multiple disease sites make tracking of their changes over time difficult. We present a method for automatically detecting and tracking the longitudinal changes in multiple sclerotic bone metastases from Dual Energy Computed Tomography (DECT) images. We employ a multi-stage approach involving (i) bone and marrow extraction, (ii) slice-wise lesion candidate detection and volumetric segmentation, and (iii) aggregation of these 3D candidates. The algorithm achieved 78% agreement with radiologist identified lesions from 10 patients. Longitudinal consistency in the lesion detection computed over 26 scans using Williams' index was 1.02 ± 0.23 using DICE and 1.03±0.30 using Hausdorff metrics. We also present preliminary results for analyzing lesion material composition changes by using a novel representation computed from the DECT images, where clear differences between bone metastases and normal marrow can be seen.
早期发现和评估骨转移性癌症的变化能够使临床医生监测疾病进展并调整治疗方案,从而帮助患者获得更好的治疗效果。然而,对比度不佳使得检测困难,且多个病灶部位使得随时间追踪其变化也很困难。我们提出了一种从双能计算机断层扫描(DECT)图像中自动检测和追踪多个硬化性骨转移灶纵向变化的方法。我们采用了一种多阶段方法,包括(i)骨骼和骨髓提取,(ii)逐切片病变候选检测和体积分割,以及(iii)这些三维候选的聚合。该算法与放射科医生从10名患者中识别出的病变的一致性达到78%。使用威廉姆斯指数在26次扫描中计算出的病变检测纵向一致性,使用DICE系数为1.02±0.23,使用豪斯多夫度量为1.03±0.30。我们还展示了通过使用从DECT图像计算出的一种新颖表示来分析病变物质成分变化的初步结果,在该表示中可以看到骨转移灶与正常骨髓之间的明显差异。