Ackleh Azmy S, Saintier Nicolas, Skrzeczkowski Jakub
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428) Pabellón I-Ciudad Universitaria-Buenos Aires, Argentina.
Math Biosci Eng. 2019 Oct 17;17(1):514-537. doi: 10.3934/mbe.2020028.
We consider the following transport equation in the space of bounded, nonnegative Radon measures $\mathcal{M}^+(\mathbb{R}^d)$:$$ ∂_t\mu_t + ∂_x(v(x) \mu_t) = 0.$$We study the sensitivity of the solution $\mu_t$ with respect to a perturbation in the vector field, $v(x)$. In particular, we replace the vector field $v$ with a perturbation of the form $v^h = v_0(x) + h v_1(x)$ and let $\mu^h_t$ be the solution of $$ ∂_t\mu^h_t + ∂_x(v^h(x)\mu^h_t) = 0.$$We derive a partial differential equation that is satisfied by the derivative of $\mu^h_t$ with respect to $h$, $∂artial_h(\mu_t^h)$. We show that this equation has a unique very weak solution on the space $Z$, being the closure of $\mathcal{M}(\mathbb{R}^d)$ endowed with the dual norm $(C^{1,\alpha}(\mathbb{R}^d))^*$. We also extend the result to the nonlinear case where the vector field depends on $\mu_t$, i.e., $v=v\mu_t$.
我们考虑在有界非负拉东测度空间(\mathcal{M}^+(\mathbb{R}^d))中的如下输运方程:
(\partial_t\mu_t + \partial_x(v(x)\mu_t) = 0)。
我们研究解(\mu_t)关于向量场(v(x))中的扰动的敏感性。特别地,我们将向量场(v)替换为形如(v^h = v_0(x) + h v_1(x))的扰动,并令(\mu^h_t)为
(\partial_t\mu^h_t + \partial_x(v^h(x)\mu^h_t) = 0)
的解。我们推导了一个关于(\mu^h_t)关于(h)的导数(\partial_h(\mu_t^h))所满足的偏微分方程。我们证明该方程在空间(Z)上有唯一的非常弱解,(Z)是赋予对偶范数((C^{1,\alpha}(\mathbb{R}^d))^*)的(\mathcal{M}(\mathbb{R}^d))的闭包。我们还将结果推广到向量场依赖于(\mu_t)的非线性情形,即(v = v\mu_t)。