Suppr超能文献

基于测度空间的结构种群模型的有限差分格式。

Finite difference schemes for a structured population model in the space of measures.

机构信息

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA.

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428) Pabellón I-Ciudad Universitaria-Buenos Aires-Argentina.

出版信息

Math Biosci Eng. 2019 Oct 31;17(1):747-775. doi: 10.3934/mbe.2020039.

Abstract

We present two finite-difference methods for approximating solutions to a structured population model in the space of non-negative Radon Measures. The first method is a first-order upwind-based scheme and the second is high-resolution method of second-order. We prove that the two schemes converge to the solution in the Bounded-Lipschitz norm. Several numerical examples demonstrating the order of convergence and behavior of the schemes around singularities are provided. In particular, these numerical results show that for smooth solutions the upwind and high-resolution methods provide a first-order and a second-order approximation, respectively. Furthermore, for singular solutions the second-order high-resolution method is superior to the first-order method.

摘要

我们提出了两种用于逼近非负 Radon 测度空间中结构人口模型解的有限差分方法。第一种方法是基于一阶迎风格式的方法,第二种方法是二阶高精度方法。我们证明了这两种方案在有界 Lipschitz 范数下收敛于解。提供了几个数值例子来说明方案在奇异点处的收敛阶数和行为。特别是,这些数值结果表明,对于光滑解,迎风格式和高精度方法分别提供一阶和二阶逼近。此外,对于奇异解,二阶高精度方法优于一阶方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验