Bao Jianhai, Reisinger Christoph, Ren Panpan, Stockinger Wolfgang
Center for Applied Mathematics, Tianjin University, 300072 Tianjin, People's Republic of China.
Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, UK.
Proc Math Phys Eng Sci. 2021 Jan;477(2245):20200258. doi: 10.1098/rspa.2020.0258. Epub 2021 Jan 6.
In this paper, we derive fully implementable first-order time-stepping schemes for McKean-Vlasov stochastic differential equations, allowing for a drift term with super-linear growth in the state component. We propose Milstein schemes for a time-discretized interacting particle system associated with the McKean-Vlasov equation and prove strong convergence of order 1 and moment stability, taming the drift if only a one-sided Lipschitz condition holds. To derive our main results on strong convergence rates, we make use of calculus on the space of probability measures with finite second-order moments. In addition, numerical examples are presented which support our theoretical findings.
在本文中,我们推导了用于McKean-Vlasov随机微分方程的完全可实现的一阶时间步长格式,该格式允许状态分量中具有超线性增长的漂移项。我们为与McKean-Vlasov方程相关的时间离散相互作用粒子系统提出了米尔斯坦格式,并证明了一阶强收敛性和矩稳定性,在仅满足单边Lipschitz条件时可控制漂移。为了得出关于强收敛速率的主要结果,我们利用了具有有限二阶矩的概率测度空间上的微积分。此外,还给出了数值例子来支持我们的理论发现。