Suppr超能文献

无细胞转录在卵提取物中。

Cell-free transcription in egg extract.

机构信息

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina

出版信息

J Biol Chem. 2019 Dec 20;294(51):19645-19654. doi: 10.1074/jbc.RA119.011350. Epub 2019 Nov 15.

Abstract

Soluble extracts prepared from eggs have been used extensively to study various aspects of cellular and developmental biology. During early egg development, transcription of the zygotic genome is suppressed. As a result, traditional extracts derived from unfertilized and early stage eggs possess little or no intrinsic transcriptional activity. In this study, we show that nucleoplasmic extract (NPE) supports robust transcription of a chromatinized plasmid substrate. Although prepared from eggs in a transcriptionally inactive state, the process of making NPE resembles some aspects of egg fertilization and early embryo development that lead to transcriptional activation. With this system, we observed that promoter-dependent recruitment of transcription factors and RNA polymerase II leads to conventional patterns of divergent transcription and pre-mRNA processing, including intron splicing and 3' cleavage and polyadenylation. We also show that histone density controls transcription factor binding and RNA polymerase II activity, validating a mechanism proposed to regulate genome activation during development. Together, these results establish a new cell-free system to study the regulation, initiation, and processing of mRNA transcripts.

摘要

从鸡蛋中提取的可溶性提取物已被广泛用于研究细胞和发育生物学的各个方面。在早期卵发育过程中,合子基因组的转录受到抑制。因此,传统的从未受精和早期卵中提取的提取物几乎没有或没有内在的转录活性。在这项研究中,我们表明核质提取物(NPE)支持染色质化质粒底物的强大转录。尽管是从转录失活状态的卵中制备的,但制备 NPE 的过程类似于导致转录激活的卵受精和早期胚胎发育的某些方面。使用该系统,我们观察到启动子依赖性募集转录因子和 RNA 聚合酶 II 导致常规的转录和前体 mRNA 加工模式,包括内含子剪接和 3' 切割和多聚腺苷酸化。我们还表明,组蛋白密度控制转录因子结合和 RNA 聚合酶 II 活性,验证了一种在发育过程中调节基因组激活的机制。总之,这些结果建立了一个新的无细胞系统来研究 mRNA 转录的调节、起始和加工。

相似文献

1
Cell-free transcription in egg extract.
J Biol Chem. 2019 Dec 20;294(51):19645-19654. doi: 10.1074/jbc.RA119.011350. Epub 2019 Nov 15.
2
Analysis of histones and chromatin in Xenopus laevis egg and oocyte extracts.
Methods. 2010 May;51(1):3-10. doi: 10.1016/j.ymeth.2009.12.014. Epub 2010 Jan 4.
3
Chromatin assembly and transcriptional cross-talk in Xenopus laevis oocyte and egg extracts.
Int J Dev Biol. 2016;60(7-8-9):315-320. doi: 10.1387/ijdb.160161ds.
5
RNA 3' cleavage and polyadenylation in oocytes and unfertilized eggs of Xenopus laevis.
Dev Biol. 1988 Feb;125(2):237-45. doi: 10.1016/0012-1606(88)90207-2.
6
Characterization of RNA polymerase II-dependent transcription in Xenopus extracts.
Dev Biol. 1992 Sep;153(1):150-7. doi: 10.1016/0012-1606(92)90099-3.
7
Coupled transcription-and-translation in Xenopus oocyte and egg extracts.
J Biotechnol. 2006 Oct 1;125(4):557-64. doi: 10.1016/j.jbiotec.2006.03.020. Epub 2006 May 2.
8
Chaperone-mediated chromatin assembly and transcriptional regulation in Xenopus laevis.
Int J Dev Biol. 2016;60(7-8-9):271-276. doi: 10.1387/ijdb.130188ds.
9
Reprogramming of somatic cells and nuclei by Xenopus oocyte and egg extracts.
Int J Dev Biol. 2016;60(7-8-9):289-296. doi: 10.1387/ijdb.160163at.
10
In vitro transcription by RNA polymerase II in extracts of Xenopus oocytes, eggs, and somatic cells.
Anal Biochem. 1992 Jun;203(2):340-7. doi: 10.1016/0003-2697(92)90322-x.

引用本文的文献

1
Preparation of Nucleoplasmic Extract and Its Application in DNA End Processing.
Methods Mol Biol. 2025;2958:201-223. doi: 10.1007/978-1-0716-4714-1_14.
2
STK19 positions TFIIH for cell-free transcription-coupled DNA repair.
Cell. 2024 Dec 12;187(25):7091-7106.e24. doi: 10.1016/j.cell.2024.10.020. Epub 2024 Nov 14.
3
STK19 positions TFIIH for cell-free transcription-coupled DNA repair.
bioRxiv. 2024 Jul 23:2024.07.22.604623. doi: 10.1101/2024.07.22.604623.
4
BRD4 promotes resection and homology-directed repair of DNA double-strand breaks.
Nat Commun. 2022 May 31;13(1):3016. doi: 10.1038/s41467-022-30787-6.
6
BRCA1-BARD1 regulates transcription through BRD4 in Xenopus nucleoplasmic extract.
Nucleic Acids Res. 2021 Apr 6;49(6):3263-3273. doi: 10.1093/nar/gkab111.
7
Studying chromosome biology with single-molecule resolution in Xenopus laevis egg extracts.
Essays Biochem. 2021 Apr 16;65(1):17-26. doi: 10.1042/EBC20200026.

本文引用的文献

1
TRAIP is a master regulator of DNA interstrand crosslink repair.
Nature. 2019 Mar;567(7747):267-272. doi: 10.1038/s41586-019-1002-0. Epub 2019 Mar 6.
2
Chromatin accessibility and the regulatory epigenome.
Nat Rev Genet. 2019 Apr;20(4):207-220. doi: 10.1038/s41576-018-0089-8.
3
Splicing dysregulation as a driver of breast cancer.
Endocr Relat Cancer. 2018 Sep;25(9):R467-R478. doi: 10.1530/ERC-18-0068. Epub 2018 May 30.
5
Transcriptional Addiction in Cancer.
Cell. 2017 Feb 9;168(4):629-643. doi: 10.1016/j.cell.2016.12.013.
6
Chromatin potentiates transcription.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1536-1541. doi: 10.1073/pnas.1620312114. Epub 2017 Jan 30.
7
Genome evolution in the allotetraploid frog Xenopus laevis.
Nature. 2016 Oct 20;538(7625):336-343. doi: 10.1038/nature19840.
8
Chromatin assembly and transcriptional cross-talk in Xenopus laevis oocyte and egg extracts.
Int J Dev Biol. 2016;60(7-8-9):315-320. doi: 10.1387/ijdb.160161ds.
9
p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair.
Mol Cell Biol. 2016 Nov 14;36(23):2983-2994. doi: 10.1128/MCB.00434-16. Print 2016 Dec 1.
10
Reconstitution of the Cytoplasmic Regulation of the Wnt Signaling Pathway Using Xenopus Egg Extracts.
Methods Mol Biol. 2016;1481:101-9. doi: 10.1007/978-1-4939-6393-5_11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验