Mevissen Tycho E T, Kümmecke Maximilian, Schmid Ernst W, Farnung Lucas, Walter Johannes C
Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
Howard Hughes Medical Institute.
bioRxiv. 2024 Jul 23:2024.07.22.604623. doi: 10.1101/2024.07.22.604623.
In transcription-coupled repair, stalled RNA polymerase II (Pol II) is recognized by CSB and CRL4, which co-operate with UVSSSA and ELOF1 to recruit TFIIH for nucleotide excision repair (TC-NER). To explore the mechanism of TC-NER, we recapitulated this reaction . When a plasmid containing a site-specific lesion is transcribed in frog egg extract, error-free repair is observed that depends on CSB, CRL4, UVSSA, and ELOF1. Repair also depends on STK19, a factor previously implicated in transcription recovery after UV exposure. A 1.9 Å cryo-electron microscopy structure shows that STK19 joins the TC-NER complex by binding CSA and the RPB1 subunit of Pol II. Furthermore, AlphaFold predicts that STK19 interacts with the XPD subunit of TFIIH, and disrupting this interface impairs cell-free repair. Molecular modeling suggests that STK19 positions TFIIH ahead of Pol II for lesion verification. In summary, our analysis of cell-free TC-NER suggests that STK19 couples RNA polymerase II stalling to downstream repair events.
在转录偶联修复中,停滞的RNA聚合酶II(Pol II)被CSB和CRL4识别,它们与UVSSSA和ELOF1协同作用,招募TFIIH进行核苷酸切除修复(TC-NER)。为了探究TC-NER的机制,我们重现了这一反应。当在蛙卵提取物中对含有位点特异性损伤的质粒进行转录时,可观察到无差错修复,该修复依赖于CSB、CRL4、UVSSA和ELOF1。修复还依赖于STK19,这是一个先前被认为与紫外线照射后转录恢复有关的因子。一个1.9埃的冷冻电子显微镜结构显示,STK19通过结合CSA和Pol II的RPB1亚基加入TC-NER复合物。此外,AlphaFold预测STK19与TFIIH的XPD亚基相互作用,破坏这个界面会损害无细胞修复。分子模型表明,STK19将TFIIH定位在Pol II之前以进行损伤验证。总之,我们对无细胞TC-NER的分析表明,STK19将RNA聚合酶II的停滞与下游修复事件联系起来。