Suppr超能文献

深度学习虚拟非对比 CT 容积调强弧形治疗计划:与双能 CT 方法的比较。

Deep learning-based virtual noncontrast CT for volumetric modulated arc therapy planning: Comparison with a dual-energy CT-based approach.

机构信息

Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.

Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, 541-8567, Japan.

出版信息

Med Phys. 2020 Feb;47(2):371-379. doi: 10.1002/mp.13925. Epub 2019 Dec 3.

Abstract

PURPOSE

The aim of this study was to develop a deep learning (DL) method for generating virtual noncontrast (VNC) computed tomography (CT) images from contrast-enhanced (CE) CT images (VNC ) and to evaluate its performance in dose calculations for head and neck radiotherapy in comparison with VNC images derived from a dual-energy CT (DECT) scanner (VNC ).

METHODS

This retrospective study included data for 61 patients who underwent head and neck radiotherapy. All planning CT images were obtained with a single-source DECT scanner (80 and 140 kVp) with rapid kVp switching. The DL-based method used a pair of virtual monochromatic images (VMIs) at 70 keV with and without contrast materials. VMIs without contrast materials were used as reference true noncontrast (TNC) images. Deformable image registration was used between the TNC and CE images. We used the data of 45 patients, chosen randomly, for training (7922 paired images), and data from the other 16 patients as test data. We generated the VNC images with a densely connected convolutional network. As the VNC images, we used VMIs with the iodine signal suppressed, reconstructed from the CE images of the 16 test patients. The CT numbers of the tumor, common carotid artery, internal jugular vein, muscle, fat, bone marrow, cortical bone, and mandible of each VNC image were compared with those of the TNC image. The dose of the reference TNC plan was recalculated using the CE, VNC , and VNC images. Difference maps of the dose distributions and dose-volume histograms were evaluated.

RESULTS

The mean prediction time for the VNC images was 3.4 s per patient, and the mean number of slices was 204. The absolute differences in CT numbers of the VNC images were significantly smaller than those of the VNC images for the bone marrow (8.0 ± 6.5 vs 175.1 ± 40.9 HU; P < 0.001) and mandible (20.3 ± 19.3 vs 106.2 ± 80.5 HU; P = 0.002). The DL-based model provided the dose distribution most similar to that of the TNC plan. With the VNC plans, dose errors >1.0% were observed in bone regions. The dose-volume histogram analysis showed that the VNC plans yielded the smallest errors for the primary target, although dose differences were <1.0% for all the approaches. For the maximum dose to the mandible, the mean ± SD errors for the CE, VNC , and VNC plans were -0.13% ± 0.23% (range: -0.46% to 0.31%; P = 0.037), -0.01% ± 0.22% (range: -0.40% to 0.36%; P = 1.0), and 0.53% ± 0.47% (range: -0.21% to 1.41%; P < 0.001), respectively.

CONCLUSIONS

In this study, we developed a method based on DL that can rapidly generate VNC images from CE images without a DECT scanner. Compared with the DECT approach, the DL-based method improved the prediction accuracy of CT numbers in bone regions. Consequently, there was greater agreement between the VNC and TNC plan dose distributions than with the CE and VNC plans, achieved by suppressing the contrast material signals while retaining the CT numbers of bone structures.

摘要

目的

本研究旨在开发一种从对比增强(CE)CT 图像生成虚拟非对比(VNC)计算机断层扫描(CT)图像的深度学习(DL)方法,并将其在头颈部放疗剂量计算中的性能与来自双能 CT(DECT)扫描仪的 VNC 图像(VNC )进行比较。

方法

本回顾性研究纳入了 61 例接受头颈部放疗的患者的数据。所有计划 CT 图像均采用单源 DECT 扫描仪(80 和 140 kVp)以快速千伏切换获得。基于 DL 的方法使用一对带有和不带有对比剂的虚拟单色图像(VMI)(70 keV)。不带有对比剂的 VMIs 用作参考真实非对比(TNC)图像。在 TNC 和 CE 图像之间使用变形图像配准。我们使用 45 名患者的随机数据进行训练(7922 对图像),并使用另外 16 名患者的数据作为测试数据。我们使用密集连接卷积网络生成 VNC 图像。作为 VNC 图像,我们使用从 16 名测试患者的 CE 图像中重建的碘信号抑制的 VMIs。每个 VNC 图像的肿瘤、颈总动脉、颈内静脉、肌肉、脂肪、骨髓、皮质骨和下颌骨的 CT 数与 TNC 图像进行比较。使用 CE、VNC 和 VNC 图像重新计算参考 TNC 计划的剂量。评估剂量分布的差异图和剂量体积直方图。

结果

VNC 图像的平均预测时间为每位患者 3.4 秒,平均切片数为 204 片。VNC 图像的 CT 数的绝对差异明显小于 DECT 方法的骨髓(8.0 ± 6.5 与 175.1 ± 40.9 HU;P < 0.001)和下颌骨(20.3 ± 19.3 与 106.2 ± 80.5 HU;P = 0.002)。基于 DL 的模型提供了与 TNC 计划最相似的剂量分布。对于 VNC 计划,在骨区域观察到剂量误差>1.0%。剂量体积直方图分析表明,尽管所有方法的剂量差异<1.0%,但 VNC 计划对主要目标产生的误差最小。对于下颌骨的最大剂量,CE、VNC 和 VNC 计划的平均 ± SD 误差分别为-0.13% ± 0.23%(范围:-0.46%至 0.31%;P = 0.037)、-0.01% ± 0.22%(范围:-0.40%至 0.36%;P = 1.0)和 0.53% ± 0.47%(范围:-0.21%至 1.41%;P < 0.001)。

结论

在这项研究中,我们开发了一种基于 DL 的方法,可以从没有 DECT 扫描仪的 CE 图像快速生成 VNC 图像。与 DECT 方法相比,基于 DL 的方法提高了骨区域 CT 数的预测准确性。因此,与 CE 和 VNC 计划相比,VNC 和 TNC 计划之间的剂量分布一致性更好,同时抑制了对比剂信号,保留了骨结构的 CT 数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验