Suppr超能文献

一种用于模拟折纸组件中接触的高效数值方法。

An efficient numerical approach for simulating contact in origami assemblages.

作者信息

Zhu Yi, Filipov Evgueni T

机构信息

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Proc Math Phys Eng Sci. 2019 Oct;475(2230):20190366. doi: 10.1098/rspa.2019.0366. Epub 2019 Oct 9.

Abstract

Origami-inspired structures provide novel solutions to many engineering applications. The presence of self-contact within origami patterns has been difficult to simulate, yet it has significant implications for the foldability, kinematics and resulting mechanical properties of the final origami system. To open up the full potential of origami engineering, this paper presents an efficient numerical approach that simulates the panel contact in a generalized origami framework. The proposed panel contact model is based on the principle of stationary potential energy and assumes that the contact forces are conserved. The contact potential is formulated such that both the internal force vector and the stiffness matrix approach infinity as the distance between the contacting panel and node approaches zero. We use benchmark simulations to show that the model can correctly capture the kinematics and mechanics induced by contact. By tuning the model parameters accordingly, this methodology can simulate the thickness in origami. Practical examples are used to demonstrate the validity, efficiency and the broad applicability of the proposed model.

摘要

受折纸启发的结构为许多工程应用提供了新颖的解决方案。折纸图案中自接触的存在一直难以模拟,但它对折纸的可折叠性、运动学以及最终折纸系统的力学性能具有重要影响。为了充分挖掘折纸工程的潜力,本文提出了一种有效的数值方法,用于在广义折纸框架中模拟面板接触。所提出的面板接触模型基于势能驻值原理,并假设接触力守恒。接触势的公式化使得当接触面板与节点之间的距离趋近于零时,内力向量和刚度矩阵都趋近于无穷大。我们通过基准模拟表明,该模型能够正确捕捉由接触引起的运动学和力学特性。通过相应地调整模型参数,这种方法可以模拟折纸中的厚度。实际例子用于证明所提出模型的有效性、效率和广泛适用性。

相似文献

1
An efficient numerical approach for simulating contact in origami assemblages.
Proc Math Phys Eng Sci. 2019 Oct;475(2230):20190366. doi: 10.1098/rspa.2019.0366. Epub 2019 Oct 9.
2
3D printing of complex origami assemblages for reconfigurable structures.
Soft Matter. 2018 Oct 10;14(39):8051-8059. doi: 10.1039/c8sm01341a.
3
Nonlinear mechanics of non-rigid origami: an efficient computational approach.
Proc Math Phys Eng Sci. 2017 Oct;473(2206):20170348. doi: 10.1098/rspa.2017.0348. Epub 2017 Oct 11.
4
Improving mass lumping and stiffness parameters of bar and hinge model for accurate modal dynamics of origami structures.
Philos Trans A Math Phys Eng Sci. 2024 Oct 7;382(2283):20240012. doi: 10.1098/rsta.2024.0012.
5
Multimaterial 3D printed self-locking thick-panel origami metamaterials.
Nat Commun. 2023 Mar 23;14(1):1607. doi: 10.1038/s41467-023-37343-w.
6
Rigid-foldable cylindrical origami with tunable mechanical behaviors.
Sci Rep. 2024 Jan 2;14(1):145. doi: 10.1038/s41598-023-50353-4.
7
Multi-Stability of the Extensible Origami Structures.
Adv Sci (Weinh). 2023 Oct;10(29):e2303454. doi: 10.1002/advs.202303454. Epub 2023 Aug 8.
9
Lattice-and-Plate Model: Mechanics Modeling of Physical Origami Robots.
Soft Robot. 2023 Feb;10(1):149-158. doi: 10.1089/soro.2021.0172. Epub 2022 Jun 17.
10
Designing of self-deploying origami structures using geometrically misaligned crease patterns.
Proc Math Phys Eng Sci. 2016 Jan;472(2185):20150235. doi: 10.1098/rspa.2015.0235.

引用本文的文献

1
On rigid origami III: local rigidity analysis.
Proc Math Phys Eng Sci. 2022 Feb;478(2258):20210589. doi: 10.1098/rspa.2021.0589. Epub 2022 Feb 9.
2
Folding photopolymerized origami sheets by post-curing.
SN Appl Sci. 2021;3(1):133. doi: 10.1007/s42452-020-04018-w. Epub 2021 Jan 13.
3
Folding of Tubular Waterbomb.
Research (Wash D C). 2020 Apr 10;2020:1735081. doi: 10.34133/2020/1735081. eCollection 2020.

本文引用的文献

1
Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13210-13215. doi: 10.1073/pnas.1812486115. Epub 2018 Dec 13.
3
Bioinspired spring origami.
Science. 2018 Mar 23;359(6382):1386-1391. doi: 10.1126/science.aap7753.
4
Programmable Self-Locking Origami Mechanical Metamaterials.
Adv Mater. 2018 Apr;30(15):e1706311. doi: 10.1002/adma.201706311. Epub 2018 Mar 7.
5
Nonlinear mechanics of non-rigid origami: an efficient computational approach.
Proc Math Phys Eng Sci. 2017 Oct;473(2206):20170348. doi: 10.1098/rspa.2017.0348. Epub 2017 Oct 11.
6
Origami-based tunable truss structures for non-volatile mechanical memory operation.
Nat Commun. 2017 Oct 17;8(1):962. doi: 10.1038/s41467-017-00670-w.
8
Self-locking degree-4 vertex origami structures.
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160682. doi: 10.1098/rspa.2016.0682.
9
Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12321-6. doi: 10.1073/pnas.1509465112. Epub 2015 Sep 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验