Dept. Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA.
Lang Origami, Alamo, CA, 94507, USA.
Sci Rep. 2018 Aug 28;8(1):12936. doi: 10.1038/s41598-018-31180-4.
Origami concepts show promise for creating complex deployable systems. However, translating origami to thick (non-paper) materials introduces challenges, including that thick panels do not flex to facilitate folding and the chances for self-intersection of components increase. This work introduces methods for creating permutations of linkage-based, origami-inspired mechanisms that retain desired kinematics but avoid self-intersection and enable their connection into deployable networks. Methods for reconfiguring overconstrained linkages and implementing them as modified origami-inspired mechanisms are proved and demonstrated for multiple linkage examples. Equations are derived describing the folding behavior of these implementations. An approach for designing networks of linkage-based origami vertices is demonstrated and applications for tessellations are described. The results offer the opportunity to exploit origami principles to create deployable systems not previously feasible.
折纸概念显示出在创建复杂可展开系统方面的潜力。然而,将折纸转化为厚(非纸)材料会带来挑战,包括厚面板不能弯曲以方便折叠,以及组件自相交的可能性增加。这项工作介绍了创建基于连杆的、受折纸启发的机构的排列组合的方法,这些机构保留了所需的运动学,但避免了自相交,并能够将它们连接成可展开的网络。用于重新配置过约束连杆并将其实现为修改后的受折纸启发的机构的方法已被证明并针对多个连杆示例进行了演示。推导出描述这些实现的折叠行为的方程。展示了一种设计基于连杆的折纸顶点网络的方法,并描述了用于镶嵌的应用。结果提供了利用折纸原理来创建以前不可行的可展开系统的机会。